2019高考數學大二輪復習 專題10 系列4選講 第1講 坐標系與參數方程真題押題精練 理.doc
《2019高考數學大二輪復習 專題10 系列4選講 第1講 坐標系與參數方程真題押題精練 理.doc》由會員分享,可在線閱讀,更多相關《2019高考數學大二輪復習 專題10 系列4選講 第1講 坐標系與參數方程真題押題精練 理.doc(4頁珍藏版)》請在裝配圖網上搜索。
第1講 坐標系與參數方程 1. (2018高考全國卷Ⅰ)在直角坐標系xOy中,曲線C1的方程為y=k|x|+2.以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ2+2ρcos θ-3=0. (1)求C2的直角坐標方程; (2)若C1與C2有且僅有三個公共點,求C1的方程. 解析:(1)由x=ρcos θ,y=ρsin θ得C2的直角坐標方程為(x+1)2+y2=4. (2)由(1)知C2是圓心為A(-1,0),半徑為2的圓. 由題設知,C1是過點B(0,2)且關于y軸對稱的兩條射線.記y軸右邊的射線為l1,y軸左邊的射線為l2. 由于點B在圓C2的外面,故C1與C2有且僅有三個公共點等價于l1與C2只有一個公共點且l2與C2有兩個公共點,或l2與C2只有一個公共點且l1與C2有兩個公共點. 當l1與C2只有一個公共點時,點A到l1所在直線的距離為2,所以=2,故k=-或k=0. 經檢驗,當k=0時,l1與C2沒有公共點; 當k=-時,l1與C2只有一個公共點,l2與C2有兩個公共點. 當l2與C2只有一個公共點時,點A到l2所在直線的距離為2,所以=2,故k=0或k=. 經檢驗,當k=0時,l1與C2沒有公共點; 當k=時,l2與C2沒有公共點. 綜上,所求C1的方程為y=-|x|+2. 2.(2018高考全國卷Ⅲ)在平面直角坐標系xOy中,⊙O的參數方程為(θ為參數),過點(0,-)且傾斜角為α的直線l與⊙O交于A,B兩點. (1)求α的取值范圍; (2)求AB中點P的軌跡的參數方程. 解析:(1)⊙O的直角坐標方程為x2+y2=1. 當α=時,l與⊙O交于兩點. 當α≠時,記tan α=k,則l的方程為y=kx-.l與⊙O交于兩點當且僅當<1,解得k<-1或k>1,即α∈或α∈. 綜上,α的取值范圍是. (2)l的參數方程為 . 設A,B,P對應的參數分別為tA,tB,tP, 則tP=,且tA,tB滿足t2-2tsin α+1=0. 于是tA+tB=2sin α,tP=sin α. 又點P的坐標(x,y)滿足 所以點P的軌跡的參數方程是 . 3.(2017高考全國卷Ⅲ)在直角坐標系xOy中,直線l1的參數方程為(t為參數),直線l2的參數方程為(m為參數).設l1與l2的交點為P,當k變化時,P的軌跡為曲線C. (1)寫出C的普通方程; (2)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,設l3:ρ(cos θ+sin θ)-=0,M為l3與C的交點,求M的極徑. 解析:(1)消去參數t得l1的普通方程l1:y=k(x-2);消去參數m得l2的普通方程l2:y=(x+2). 設P(x,y),由題設得消去k得x2-y2=4(y≠0),所以C的普通方程為x2-y2=4(y≠0). (2)C的極坐標方程為ρ2(cos2θ-sin2θ)=4(0<θ<2π,θ≠π). 聯(lián)立 得cos θ-sin θ=2(cos θ+sin θ). 故tan θ=-,從而cos2θ=,sin2θ=. 代入ρ2(cos2θ-sin2θ)=4得ρ2=5, 所以交點M的極徑為. 1.已知橢圓C:(φ為參數),A,B是橢圓C上的動點,且滿足OA⊥OB(O為坐標原點).以原點O為極點,x軸的正半軸為極軸建立極坐標系,點D的極坐標為(4,). (1)求線段AD的中點M的軌跡E的普通方程; (2)利用橢圓C的極坐標方程證明+為定值,并求△AOB面積的最大值. 解析:(1)點D的直角坐標為(2,2). 由題意可設點A的坐標為(2cos α,sin α), 則AD的中點M的坐標為(1+cos α,+sin α), 所以點M的軌跡E的參數方程為(α為參數), 消去α可得E的普通方程為(x-1)2+4(y-)2=1. (2)證明:橢圓C的普通方程為+y2=1,化為極坐標方程得ρ2+3ρ2sin2θ=4,變形得ρ= . 由OA⊥OB,不妨設A(ρ1,θ),B(ρ2,θ+), 所以+=+=+==(定值). 所以△AOB的面積S=ρ1ρ2 == = . 易知當sin 2θ=0時,△AOB的面積取得最大值1. 2.已知直線l的參數方程為(t為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=4sin(θ-). (1)求圓C的直角坐標方程; (2)若P(x,y)是直線l與圓面ρ≤4sin(θ-)的公共點,求x+y的取值范圍. 解析:(1)因為圓C的極坐標方程為ρ=4sin(θ-), 所以ρ2=4ρsin(θ-)=4ρ(sin θ-cos θ). 又ρ2=x2+y2,x=ρcos θ,y=ρsin θ, 所以x2+y2=2y-2x, 故圓C的直角坐標方程為x2+y2+2x-2y=0. (2)設z=x+y.由圓C的方程x2+y2+2x-2y=0,得(x+1)2+(y-)2=4, 所以圓C的圓心是(-1,),半徑是2. 將代入z=x+y,得z=-t, 又直線l過C(-1,),圓C的半徑是2, 所以|t|≤2,解得-2≤t≤2, 所以-2≤-t≤2,即-2≤z≤2. 故x+y的取值范圍是[-2,2].- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019高考數學大二輪復習 專題10 系列4選講 第1講 坐標系與參數方程真題押題精練 2019 高考 數學 二輪 復習 專題 10 系列 坐標系 參數 方程 押題 精練
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.kudomayuko.com/p-3905187.html