ZZ4000支撐掩護(hù)式液壓支架設(shè)計【含CAD圖紙+文檔】
壓縮包內(nèi)含有CAD圖紙和說明書,均可直接下載獲得文件,所見所得,電腦查看更方便。Q 197216396 或 11970985
翻譯部分 英文原文 The Design of Four-bar Linkage of Large Inclined Angle Hydraulic Support Abstract- Four-bar linkage is one of the most important components of shield-type powered support or chock-shield-type hydraulic support. Parameterized modeling, simulation and optimization of four-bar linkage is firstly accomplished by use of ADAMS software in designing a large inclined angle hydraulic support. Then based on three-dimension model of the whole hydraulic support, applying COSMOS/Works software, finite element analysis is made under the front torsion load of roof beam. The analysis result validates the feasibility of four-bar linkage design and meets the design requirements very well. This method can effectively shorten the design cycle and improve design efficiency of hydraulic support. Keyword-hydraulic support; four-bar linkage; optimization design; ADAMS; finite element analysis 1. Introduction Four-bar linkage is one of the most important components of shield-type hydraulic support or chock-shield-type hydraulic support. Its function has two aspects: One, as the support legs rises or lowers, the leading edge of roof beam moves up and down nearly vertically, thus maintaining a nearly constant unsupported distance between the coal wall and the leading edge of roof beam. This is a feature that is widely considered most desirable for good roof control. Second, it makes the support to be capable of bearing larger horizontal load. In designing a large inclined angle hydraulic support, optimization of the four-link design is an important work. The size of four-bar linkage directly influences the performance and status of hydraulic support. In the traditional four-bar linkage design, BASIC program is used to compute [1], but the results often can not meet the design requirements and can not obtain the optimal solution. Currently, ADAMS software is more and more applied in the mechanical dynamics field [2]. So, the paper makes use of the ADAMS software to model and simulate the four-bar linkage in order to achieve the optimal design solution[3-4]. In order to validate the feasibility of four-bar linkage design[5], applying COSMOS/Works software, finite element analysis is made. 2. Dimension calculation of four-bar linkage As shown in Fig. 1, is the calculation height in the maximum position. Mathematically, the parameters of four-bar linkage is supposed that: Figure 1. Parameters of four-bar linkage 2.1 The calculation of rear bar and shield beam As shown in Fig. 2, if H1 is determined, the length of shield beam is: (1) (1)The length of rear bar?? A=I·G (2) The distance between top link point of front bar and top link point of rear bar is: B=I1·G (3) The distance between top link point of front bar and top link point of shield beam is: F=G-B (4) The distance between bottom link point of rear bar and origin of coordinates is , as shown in Fig. 2. 1 E 2.2 The Calculation of length and angle of front bar 1) Coordinate of 1 point b When the support is in the highest position , the coordinate of point is: X1=F·COS(P1) (5) y1=H1-F·SIN(P1) (6) ??Figure 2. Geometrical relationship of four-bar linkage 2) Coordinate of 2 point b When the support is in the lowest position , the coordinate of point is: (7) (8) When the support is in the lowest position, ??25°~30°, according to the geometric requirements. Mathematically, it is supposed that . (9) 3) Coordinate of 3 point b When it is right-angle between shield beam and rear bar, the coordinate of 3 point is: b (10) (11) (12) (13) 4) Coordinate of c point is the length of front bar. So the length of front bar can be calculated by use of the equation of circle. The coordinate of c point is: (14) (15) The length and angle of front bar can be calculated after determining the coordinate of c point. 2.3 The calculation of the height D of the front bar bottom link point, and the projective distance E on the base between bottom link point of front bar and bottom link point of rear bar After calculating the coordinate of c point, the height D and length E is: (16) (17) As to the top coal caving hydraulic support that the maximum supported height is 2600mm, the supported height properly should be increased in order to meet the design requirements of hydraulic support in deeply inclined coal seam, the calculation height H1 is increased to 2118mm. By use of the program that sloping line is thought as the objective function, the below result can be obtained. tan?? = 0.338, Q1= 75.10°, Q2= 29.98°, P1= 59.96°, P2= 15.09°, A= 988.78mm, B= 295.56mm, C= 995.82mm, D= 367.30mm, E= 421.91mm, G= 1343.45mm. 3. Parameter optimization of four-bar linkage size According to Fig. 1 and the physical dimension calculated by program, the four-bar linkage is modeled by means of ADAMS/View. Because the linkage size parameter that calculated in computational program is not the optimal result by analyzing the simulation result, optimally designing the linkage of should be parameterized modeling so as to obtain the optimal result that meet the design requirement. During parameterized modeling, every link point is set to variable, and the design result of every variable is gotten by analyzing the variables, as shown in Table 1. Table 1. Design results of every variable The scope and the influence on the design of design variables can be observed. MSC.ADAMS/View provides all kinds of drawing diagrams as the research report, which include the sensitivity of design variables. As shown in Table 1, the sensitivity of DV_1, DV_2, DV_4, DV_6 is greater. This implies that these four variables influence the optimization results more greatly. Four greater sensitivity design points are set, the curve of every design point is changed together by ADAMS/PostProcesser, then are compared and optimized. Through operating the optimization program, four design points are optimized. At last the optimal physical dimension of four-bar linkage is obtained by analyzing and calculating. tan?? = 0.0035, Q1= 57.59°, Q2= 24.90°,P1= 46.40°, A= 990mm, B= 260mm, C= 1125mm, D= 265mm, E= 478mm, G= 1155mm. By means of ADAMS software, modeling the four-bar linkage according to the calculated size, then analyzing the link point through the trajectory simulation, as shown in Fig. 3. Figure 3. The optimized trajectory curve The optimal result of the four-bar linkage size fully meet the design requirements of hydraulic support by analysis. 4. The finite element analysis of hydraulic support According to the calculated dimension of four-bar linkage, assembling with the other part of hydraulic support, the three-dimensional model of hydraulic support is set up, as shown in Fig. 4. Applying the software COSMOS/Works, finite element analysis of the whole hydraulic support is made under front torsion load. Figure 4. The three-dimension model of hydraulic support 4.1 The finite element calculation After finite element pre-processing, COSMOS/Works automatically generates graphic solution. The graphic solution can be defined according to the need. For example, stress, strain and dynamic change animation of strain, and formatting section graph can be obtained, as shown in Fig. 5. (a) Front torsion load displacement (b) Front torsion load stress (c) Front torsion load strain (d) Front torsion load local stress Figure 5. The finite element analysis results of the whole hydraulic support under front torsion load According to the calculation result, maximum deformation of hydraulic is 11.63mm, maximum equivalent stress of roof beam is 562.7 a MP , and maximum equivalent strain is 3.503E-03. All pin force state can be seen in table 2. Table 2. Force acted on the hinge-jointed pin 4.2 Data analysis Maximum stress and strain mainly appear in the load part and surrounding area of roof beam. Hydraulic legs are unequally loaded. The stress of front and rear hydraulic leg which are at the load side is also larger than the other side. On the front part of roof beam, the effect is obvious under the action of front part torsion load. The rear part is uniformly acted by the load. If the load is too large, the whole support has a torsion trend. Form table 2, it can be found that the shearing resistance of left and right pin joined roof beam with shield beam is different. The shear resistance of pins jointed front bar with shield beam, rear bar with shield beam, rear bar with substructure, front bar with substructure are large. The strength analysis shows that maximum stress distribution is regional and partial. So, high strength steel sheet is commonly used in the large stress area to improve mechanical characteristic. The hydraulic support fully reaches using standard in practice and satisfies the using requirement of the large inclined angle mining. 5. Conclusion Applying ADAMS software not only can carry out parametric modeling, motion trajectory simulation, optimization design of a large inclined angle hydraulic support, but also can analyze motion state of related moving elements with motion simulation. Through making finite element analysis on whole hydraulic support, the feasibility of four-bar design is verified, and the distribution regularity of support stress is found out. The designed hydraulic support fully reaches using standard in the coal mine, meets the using requirements of the large inclined angle mining. This method can effectively shorten the design cycle and improve design efficiency of hydraulic support. 翻譯中文 大傾角工作面液壓支架的四桿機(jī)構(gòu)的設(shè)計 摘要-四桿機(jī)構(gòu)是支撐式和支撐掩護(hù)式一個重要的組成部分。大傾角液壓支架四桿機(jī)構(gòu)的參數(shù)化建模、仿真和優(yōu)化首先在設(shè)計中使用ADAMS軟件。然后,基于三維模型的整體液壓支架,,建立了支架的有限元分析模型并對其進(jìn)行整架強(qiáng)度有限元分析,分析結(jié)果驗證了四桿機(jī)構(gòu)的可行性設(shè)計,很好的滿足了設(shè)計要求。該方法能有效縮短設(shè)計周期,提高液壓支架的設(shè)計效率。 關(guān)鍵字:液壓支架:四連桿機(jī)構(gòu):最優(yōu)化設(shè)計:ADAMS:有限元分析 1. 介紹 四桿機(jī)構(gòu)是支撐式和支撐掩護(hù)式一個重要的組成部分。它的功能有兩個 方面:首先,作為支撐腿升高或者降低,帶動頂梁做近乎垂直的上下移動,從而維持頂梁前沿與煤壁的距離不變,這被認(rèn)為是最理想的頂板控制。其次,這樣做會讓液壓支架 有較大的水平荷載的能力。 在設(shè)計大傾角工作面液壓支架,四連桿機(jī)構(gòu)優(yōu)化的設(shè)計是一項重要的工作。四桿機(jī)構(gòu)的大小直接影響著對液壓支架的性能和狀態(tài)。在傳統(tǒng)的四桿機(jī)構(gòu)設(shè)計、基本程序使用計算[1],但結(jié)果往往不能滿足設(shè)計要求要求并不能獲得最優(yōu)的解決方案。目前,利用ADAMS軟件被越來越多的應(yīng)用 機(jī)械動力學(xué)領(lǐng)域的[2]。所以,本文使用ADAMS軟件的模型和模擬四桿機(jī)構(gòu)以實現(xiàn)最優(yōu)的設(shè)計解決[3]。為了驗證該四的可行性連桿設(shè)計[5],運(yùn)用 COSMOS/Works 軟件進(jìn)行有限元分析。 2. 四連桿機(jī)構(gòu)的尺寸計算 在圖1所示,是假設(shè)四連桿機(jī)構(gòu)在最高位置時的計算方法 2.1后連桿與掩護(hù)梁計算 如圖2所示,如果H1是確定的,掩護(hù)梁的長度是: (1) 后連桿的長度: A=I·G (2) 前連桿上鉸接點與后連桿上鉸接點的距離是: B=I1·G (3) 前連桿上鉸接點與掩護(hù)梁上鉸接點的距離是: F=G-B (4) 后連桿下鉸接點與坐標(biāo)原點的距離是E1 如圖2所示 2.2 前連桿長度和角度的計算 1)點b1的坐標(biāo) 當(dāng)支架在最高位置H1時,b1點的坐標(biāo)是: X1=F·COS(P1) (5) y1=H1-F·SIN(P1) (6) 圖2 四連桿機(jī)構(gòu)的幾何關(guān)系 2) b2點坐標(biāo) 當(dāng)支架在最低位置H2時,b2點的坐標(biāo)是: (7) (8) 當(dāng)支架在最低位置,Q2≥25°~30°。 根據(jù)幾何要求,假定Q2=25° (9) 3) b3點坐標(biāo) 當(dāng)掩護(hù)梁與后連桿呈直角時,b3點坐標(biāo): (10) (11) (12) (13) 4) c點坐標(biāo) 所以前連桿的長度可以用方程圓計算出,c點的坐標(biāo)是: (14) (15) 確定c點的坐標(biāo)就能知道前連桿的長度和角度 2.3 通過計算得到后連桿下鉸點的高度D,并且可以得到后連桿與前連桿投影到底面的距離E當(dāng)計算出c點的坐標(biāo),D點的高度、E點的長度是: (16) (17) 作為對放頂煤液壓支架最大限度的支持是2600mm高度的支持,應(yīng)在增加高度以滿足對液壓支架設(shè)計的要求,在大傾角煤層,H1高度增加到2118mm,利用該程序傾斜線為目標(biāo)函數(shù)的思想,可以得到以下的結(jié)果: tan?? = 0.338, Q1= 75.10°, Q2= 29.98°, P1= 59.96°, P2= 15.09°, A= 988.78mm, B= 295.56mm, C= 995.82mm, D= 367.30mm, E= 421.91mm, G= 1343.45mm. 3 四桿機(jī)構(gòu)參數(shù)優(yōu)化 根據(jù)圖1和實際尺寸用程序來計算模擬四桿機(jī)構(gòu)指的是用ADAMS/View。因為連桿大小在計算程序的參數(shù)計算是不真實的,通過分析最優(yōu)結(jié)果的仿真結(jié)果,優(yōu)化設(shè)計聯(lián)動應(yīng)該參數(shù)化模型以獲得最優(yōu)結(jié)果,滿足了設(shè)計要求。 在參數(shù)化建模方法,每一個環(huán)節(jié)都是可變的,每個變量的設(shè)計結(jié)果通過分析,顯示在表1。 變量范圍和影響設(shè)計的變量可以觀察到。MSC.ADAMS/View提供各種各樣的繪圖,以便研究報告,包括設(shè)計變量的靈敏度。如圖所示,表1的靈敏度,DV_2 DV_4 DV_1,DV_6, 較大。這意味著這些四個變量對優(yōu)化結(jié)果更有很大的影響。 選擇四個較為敏感的設(shè)計點,讓每個設(shè)計點在ADAMS/PostProcesser下彎曲,然后進(jìn)行比較和優(yōu)化。通過操作優(yōu)化程序,對四個設(shè)計點進(jìn)行優(yōu)化。最后最優(yōu)物理維度到的四桿機(jī)構(gòu)分析和計算。 tan=0.0035, Q1=57.59°, Q2=24.90°,P1=46.40°, A=990mm, B=260mm, C=1125mm, D=265mm, E=478mm, G=1155mm. 利用ADAMS軟件,通過計算結(jié)果對四連桿機(jī)構(gòu)建模。并分析了連桿點通過軌道仿真,顯示在圖。 3. 圖3,優(yōu)化軌跡曲線 該研究結(jié)果的四桿機(jī)構(gòu)尺寸完全相同滿足設(shè)計要求的液壓支架分析。 4. 液壓支架的有限元分析 根據(jù)計算四維度聯(lián)動、裝配時的另一部分液壓支架, 對液壓支架進(jìn)行三維模型的建立, 如圖4所示,應(yīng)用軟件COSMOS/Works,有限元分析的整體液壓支架是由前負(fù)荷下扭轉(zhuǎn)。 圖4,液壓支架的有限元分析 4.1 有限元計算 有限元預(yù)處理、COSMOS/Works、動生成圖形的解決方案。根據(jù)圖形需要可以制定解決方案。例如:應(yīng)力、應(yīng)變及動態(tài)變化的應(yīng)變,可以得截面到格式圖,如圖5。 (a)前扭轉(zhuǎn)載荷位移 (b)前扭轉(zhuǎn)荷載應(yīng)力 (c)前扭轉(zhuǎn)荷載張力 (d)前扭轉(zhuǎn)負(fù)荷局部應(yīng)力 圖5,前扭轉(zhuǎn)荷載有限元分析結(jié)果 根據(jù)計算結(jié)果,最大值11.63mm,頂梁最大壓力為562.7MP,最大張力為3.503E-03。所有應(yīng)力見表2 表2 鉸接軸應(yīng)力 4.2 數(shù)據(jù)分析 最大應(yīng)力和應(yīng)變主要出現(xiàn)在負(fù)荷分和頂梁周邊。液壓支架受的是不平等載荷。液壓支架的前后連桿部分也比其他地方負(fù)荷大。頂梁的前半部載荷明顯下降。而后面不封則一直負(fù)載。從表2可以看出,左翼和加有側(cè)護(hù)板的右翼抗剪承載力是不同的。掩護(hù)梁與底座的前后鉸接點的剪切應(yīng)力也非常大。 分析表明,強(qiáng)度最大應(yīng)力只分布在局部區(qū)域。所以,高強(qiáng)度鋼常用在大應(yīng)力區(qū)來改善 機(jī)械的特性。使液壓支架在實踐中達(dá)到使用標(biāo)準(zhǔn)并滿足大傾角采礦的使用要求。 5. 結(jié)論 應(yīng)用ADAMS軟件不但能執(zhí)行參數(shù)化建模、運(yùn)動軌跡仿真,對大傾角液壓支架進(jìn)行優(yōu)化設(shè)計,而且也可以分析運(yùn)動狀態(tài)相關(guān)的移動,元素與運(yùn)動仿真。通過制作有限元分析整體液壓支架四連桿機(jī)構(gòu)的可行性已經(jīng)被證實,支架應(yīng)力的分布規(guī)律被發(fā)現(xiàn)。全達(dá)到煤礦的使用標(biāo)準(zhǔn),滿足大傾角采礦的使用要求。該方法可以有效地縮短設(shè)計周期和提高設(shè)計效率的液壓支架。壓縮包目錄 | 預(yù)覽區(qū) |
|
請點擊導(dǎo)航文件預(yù)覽
|
編號:4298653
類型:共享資源
大?。?span id="9t1rjnz" class="font-tahoma">4.11MB
格式:ZIP
上傳時間:2020-01-05
50
積分
積分
- 關(guān) 鍵 詞:
- 含CAD圖紙+文檔 zz4000 支撐 支持 掩護(hù) 液壓 支架 設(shè)計 cad 圖紙 文檔
- 資源描述:
-
壓縮包內(nèi)含有CAD圖紙和說明書,均可直接下載獲得文件,所見所得,電腦查看更方便。Q 197216396 或 11970985
展開閱讀全文
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://m.kudomayuko.com/p-4298653.html