壓縮包內(nèi)含有CAD圖紙和說明書,均可直接下載獲得文件,所見所得,電腦查看更方便。Q 197216396 或 11970985
目 錄
1 緒論 1
2 材料與方法 2
2.1 微分生物滴濾設(shè)備和運(yùn)作 2
2.2 分析方法 4
3 結(jié)果與討論 6
3.1 氣速的影響 6
3.2 滴濾液體速度的影響 7
3.3 中間硫物種的影響 8
3.4 生物動(dòng)力參數(shù)分析 9
4 結(jié)論 12
參考文獻(xiàn) 13
外文 ----------------------------------------------------------------------------- 15
對于使用微分生物滴濾池降解硫化氫的局限性的探討
Seongyup Kim, Marc A. Deshusses ?
Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
Received 12 January 2005; received in revised form 29 April 2005; accepted 1 May 2005
摘 要
在高性能生物滴濾池中去除H2S研究為使用微分生物滴濾。微分生物滴濾波器的目的是要達(dá)到氣流速度通過一個(gè)縮影填料床,在這種情況下是一個(gè)單一的4厘米開孔聚氨酯泡沫塑料立方體。外部傳質(zhì)是限制空氣流速低3000至4000 mh-1,通過其他可能的參數(shù),如生物動(dòng)力學(xué)或4000mh-1以上的擴(kuò)散控制的性能上述。液體滴率對H2S去除的影響被裁定為無低氣體速度,并顯著在高氣速,與對潤濕的包裝和基于實(shí)驗(yàn)條件速率限制猜測一致。對不同種類的硫?qū)α蚧瘹涞奶幚淼脑黾拥挠绊戇M(jìn)行了調(diào)查。硫化物對H2S去除呈負(fù)影響,而硫酸鹽和亞硫酸鹽已不具影響。有趣的是,微量的硫代硫酸鈉會改善硫化氫的去除率。在近中性pH值時(shí)氧攝取率確定評估的細(xì)胞活動(dòng)是最大的。最后,在微分生物滴濾池中獲得的硫化氫去除的生物動(dòng)力參數(shù)和在一批懸浮培養(yǎng)基進(jìn)行了比較。在微分生物滴濾的速率高得多,表明該批式反應(yīng)器受到傳質(zhì)限制,并說明在搖瓶系統(tǒng)中該生物動(dòng)力參數(shù)確定未必適用于生物滴濾池。整體而言,這項(xiàng)研究強(qiáng)調(diào)指出,微分生物滴濾器是一個(gè)有用的工具,用于調(diào)查的性能和限制H2S的生物滴濾,詳細(xì)的研究有助于了解生物滴濾池污染物去除機(jī)制。
? 2005 Elsevier公司乙訴,保留所有權(quán)利。
關(guān)鍵詞:生物滴濾池,H2S的降解,生物動(dòng)力參數(shù)
1 緒論
惡臭氣體的排放,是廢水處理和其他處理設(shè)施一個(gè)主要問題。生物處理是既定的代替?zhèn)鹘y(tǒng)的臭氣控制方法[1,2],但直到最近,生物總是比化學(xué)洗滌器需要較大的反應(yīng)器容積。在2001年,在奧蘭治縣衛(wèi)生區(qū)(OCSD)5個(gè)大規(guī)模化學(xué)洗滌器轉(zhuǎn)化為生物滴濾池,并已開始以氣體接觸1.6 s至4 s的時(shí)間運(yùn)作,這與化學(xué)洗滌器的接觸時(shí)間相類似[3]。即使是在非常短的接觸時(shí)間,對進(jìn)口硫化氫的濃度高達(dá)30-50ppmv H2S去除也超過97%。相應(yīng)的H2S去除容積率,是95-105克H2S m-3h-1。與其他生物濾池或生物滴濾池處理濃度在范圍內(nèi)的50ppmv或更少的H2S相比,其消除率更大[1,4]。觀察到在OCSD異常高的表現(xiàn)的可能解釋為,由于包裝的大型水面地區(qū)高污染物的傳質(zhì)速率,一個(gè)極高的氣體線性速度(1.8ms-1或6500mh-1)和最佳操作條件(養(yǎng)分,pH值,CO2)。OCSD非傳統(tǒng)狀況的生物滴濾池建議生物滴濾池降解硫化氫限制的研究可導(dǎo)致更好地了解該進(jìn)程,并優(yōu)化他們的工作表現(xiàn)。特別是,傳質(zhì)和硫化氫的生物降解動(dòng)力學(xué)的高性能生物滴濾池需要進(jìn)一步的定義。因此,本研究的重點(diǎn)放在選定對生物滴濾池降解硫化氫性能參數(shù)的影響。微分生物滴濾較早前的描述[4]是用于這些實(shí)驗(yàn)。
在生物處理中,H2S被細(xì)菌氧化成硫酸根離子或其離子形式的HS?或S2?的,是用來作為巖性自養(yǎng)菌的能源,這就需要碳二氧化碳或溶解碳酸鹽作為碳源。那里有幾個(gè)可能的中間硫物種,如S0,S2O32?和SO32可能產(chǎn)生的氧化過程[5]。其生產(chǎn)依賴于H2S負(fù)荷,pH值,細(xì)菌,氧的濃度和溫度[5-8],不過,有關(guān)生物動(dòng)力因素仍所知甚少,且可能阻礙促使H2S轉(zhuǎn)變成其終產(chǎn)物。對這些關(guān)系更好的定義可以幫助了解過程的限制。同樣,在工業(yè)方面,條件可能會導(dǎo)致突然過量的或更多的預(yù)計(jì)將影響處理效果的中間硫物種,但生物滴濾池對這樣接觸的反應(yīng)更不為所知。各種硫物種的影響依靠過程中不同的速率限制步驟的預(yù)期變化,因此,對生物處理硫物種研究的影響應(yīng)與傳質(zhì)緊密聯(lián)系在一起研究。因此,本研究的目的分別為:(1)以確定效應(yīng)氣體的速度對使用微分生物滴濾降解硫化氫性能的影響;(2)以確定效果的操作參數(shù)和突然增加選定的硫物種對在低和高氣流速度下一個(gè)硫化氫生物滴濾床的表現(xiàn);(3)以確定生物滴濾生物動(dòng)力參數(shù),與那些取得了一批在攪拌式生物反應(yīng)器作對比。
2
2 材料與方法
2.1 微分生物滴濾設(shè)備和運(yùn)作
一個(gè)小微分生物滴濾池用于這項(xiàng)研究。它是充滿一個(gè)單一的立方體(4公分× 4公分× 4公分)開孔聚氨酯泡沫塑料包裝(EDT,Eckental,德國)相同的包裝使用在該領(lǐng)域的研究在奧蘭治縣衛(wèi)生區(qū)。泡沫立方體放置在微分生物滴濾采取了從常規(guī)生物滴濾池(見下文)運(yùn)作,在一個(gè)實(shí)驗(yàn)室與硫化氫作為唯一的污染物,因此,泡沫立方體建立了活躍的硫化氫氧化的細(xì)菌生物膜,在實(shí)驗(yàn)期間, 與很少或根本沒有生物量增長過程中出現(xiàn)的實(shí)驗(yàn)在微分生物滴濾。在實(shí)驗(yàn)之前,立方體發(fā)泡被放置在150毫升礦產(chǎn)中等[9]為20分鐘,其中刪除了部分松散的生物量不堅(jiān)決重視泡沫立方體。程序減少不明朗因素,在金額蛋白的生物量重視到包裝實(shí)驗(yàn)期間。pH值礦產(chǎn)中等清洗立方體調(diào)整到相同的pH值作為該滴的水之源生物滴濾床由滴定與2M鹽酸。在微分生物滴濾器的條件下,例如,組成部分滴液體的匹配盡可能緊密地向那些在源頭上生物滴濾以盡量減少的可能性,短期馴化的影響在微分反應(yīng)器。單一泡沫立方體住在大( 10厘米編號)明確的PVC管(圖1)[4]。該生物滴濾系統(tǒng)的設(shè)計(jì)運(yùn)行了一批系統(tǒng),以紓緩所確定的生物動(dòng)力參數(shù)。批量操作還允許大型氣體流量,使氣體電影傳質(zhì)阻力,可以減少或可能不容忽視。硫化氫降解生物滴濾運(yùn)作在一項(xiàng)反電流模式,即類似最硫化氫降解生物滴濾池,與氣體流動(dòng)向上及循環(huán)再造的礦產(chǎn)中,向下流動(dòng)??諝饬鞣职l(fā)在一個(gè)封閉的回路,由一85升Tedlar袋以微分生物滴濾床由0.2惠普鼓風(fēng)機(jī)(Ametek,Paoli,PA )的最多不超過線速度的3ms-1。最高空氣流動(dòng)在泡沫立方體導(dǎo)致一個(gè)空床停留時(shí)間(EBRT)0.01s。循環(huán)液均勻噴于頂部的床上,通過一個(gè)噴嘴。循環(huán)液體構(gòu)成的再生水(氯化二級出水從OCSD),這是噴涂在濾床使用蠕動(dòng)泵在率2.4升每小時(shí)和WL 1/4 BETE噴嘴(BETE, Greenfield, MA)。自由的和余氯,在再生水是微不足道和不影響實(shí)驗(yàn)。壓力所需的該噴嘴是小于0.7酒吧。pH值循環(huán)液體依賴于實(shí)驗(yàn)。在一個(gè)單一的測試,pH值循環(huán)液體從未下跌超過0.2 pH值單位。每個(gè)實(shí)驗(yàn)了1-6 小時(shí)類型而定實(shí)驗(yàn)。在大多數(shù)情況下,泡沫立方體從該系統(tǒng)被去除了在一個(gè)實(shí)驗(yàn)以后,以便其生物質(zhì)含量可確定。
在每個(gè)實(shí)驗(yàn)初,純硫化氫(Matheson, 紐瓦克,加州)被注射了分生物滴過濾系統(tǒng)使用20毫升注射器。在大多數(shù)情況下,實(shí)驗(yàn)包括隨著時(shí)間的過去監(jiān)測硫化氫減退在選擇的條件下,特別是以變化的氣體或液體流速。在一個(gè)微分生物滴濾床,在一個(gè)由于時(shí)間,條件不改變,大大從入口到出口口岸的反應(yīng)堆。因此,觀察動(dòng)力學(xué)對應(yīng)的動(dòng)力學(xué)整個(gè)生物反應(yīng)器在鑒于時(shí)間根據(jù)一定的條件。因?yàn)閷?shí)驗(yàn)條件下,微分生物滴濾是總是在偽穩(wěn)定狀態(tài),率和硫化氫減少在該系統(tǒng)的服務(wù)來計(jì)算硫化氫去除能力(EC)的生物滴濾。每個(gè)實(shí)驗(yàn)的短期暗示生物量增長很少發(fā)生。重復(fù)進(jìn)行了實(shí)驗(yàn),當(dāng)不同的泡沫冰塊,用降解率分別由正?;撋锪浚员M量減少影響的變異性固定化生物量密度。在選定的實(shí)驗(yàn),一些化學(xué)品被注入,在滴液,以確定化學(xué)品是否具有影響硫化氫去除。調(diào)查的影響,亞硫酸鹽和硫酸,亞硫酸鈉和硫酸鈉使用,分別注射。以下大量的解決方案增加了礦產(chǎn)中等至彌補(bǔ)滴液:0.12,0.36,1.0毫克SO32?的解決辦法; 650,1300,2600毫克SO42?的解決辦法;0.4,1.4,4.3毫克S2O32?的解決辦法。數(shù)額硫磺物種,在滴液體0.05-0.2毫克SO32?,1300毫克SO42?和1.4毫克S2O32?.加入少量的含硫的種類解決方案并不影響pH值的滴液體。
被應(yīng)用在微分生物滴濾池中具有生物活性的泡沫立方體的來源是一個(gè)二十升硫化氫降解生物滴濾池運(yùn)作先前所描述的[10] 。生物滴濾池的正常操作的PH是1.8-2.5,雖然也有人在pH為5或pH值6.5操作,此實(shí)驗(yàn)對pH值影響。在這種情況下,生物滴濾池的pH值增加了和保持在理想的價(jià)值由供應(yīng)過剩的礦產(chǎn)中。一次理想的pH值獲得,經(jīng)營條件保持恒定在至少一周,使該微生物群落可以順應(yīng)。后來,泡沫立方體被用于微分生物滴濾池的pH值-效應(yīng)實(shí)驗(yàn)。
一個(gè)3.8升不透氣的攪拌式反應(yīng)器是用于測定一些生物動(dòng)力參數(shù)。整除數(shù)礦物媒介350毫升具有相同pH值作為細(xì)胞懸架被放置在反應(yīng)堆。礦物媒介被磁攪拌器以? 200 rpm不斷攪拌。氣體硫化氫,當(dāng)時(shí)注入透過隔, 和濃度是衡量一硫化氫數(shù)據(jù)存儲器。泡沫立方體所采取的從源頭上生物滴濾是沖擊,在100毫升礦產(chǎn)中提取的生物量。細(xì)胞懸浮被分離了3000×克為15分鐘。藥丸在10mL礦物媒介被重新了懸掛。細(xì)胞懸浮被注射了入攪動(dòng)坦克反應(yīng)器,在硫化氫氣液的平衡被到達(dá)了之后,并且硫化氫含量撤除隨著時(shí)間的過去被監(jiān)測了。
2.2 分析方法
一個(gè)連續(xù)分析儀/數(shù)據(jù)記錄儀(AppTek Odalog ,分布式由偵測儀器,菲尼斯, AZ)確定硫化氫的濃度。硫化氫氣體分析儀放在外面的生物滴濾池??諝庵辛蚧瘹涞暮勘惶峁┙o分析儀由一個(gè)蠕動(dòng)泵(Cole-Parmer, Masterflex, Vernon小山, IL)以250mL每分鐘的流速通過管材(0.64 cm i.d。)并且返回到生物滴濾系統(tǒng)。液體循環(huán)流量測量與一支網(wǎng)上轉(zhuǎn)子流量計(jì)(Dwyer, 美國密歇根州的城市),而空氣流速的測量使用風(fēng)速表(HHF300A, Ω, Stamford, CT)。
相當(dāng)數(shù)量的蛋白質(zhì)在每一個(gè)泡沫立方體在每個(gè)實(shí)驗(yàn)以后是確定的。泡沫立方體從在50毫升的1 N NaOH的反應(yīng)器被去除了,安置了并且搗了好幾分鐘[11]。該解決方案與泡沫立方體是然后存放在一個(gè)沸水浴5分鐘,以進(jìn)一步提取物生物量從泡沫立方體。它在冷的熱水鍋然后冷卻下來。解決的辦法是離心,在2000 ×克為2分鐘,以消除泡沫碎片,并0.1毫升上清液用蛋白質(zhì)分析。該樣本混合與試劑從基本能力評估的蛋白分析試劑盒(皮爾斯,羅克福德,IL)和孵化在60?C水中30分鐘,讓彩色發(fā)展[12]。吸光度測量562 nm的使用分光光度計(jì)(BioRad、Smartspec 3000,赫拉克勒斯,加州)。平均蛋白質(zhì)含量的一泡沫立方體是17.4毫克(標(biāo)準(zhǔn)偏差為6.8毫克,N= 18),而復(fù)制的蛋白質(zhì)的標(biāo)準(zhǔn)偏差測定為一個(gè)單一的泡沫立方體通常小于5%。生物量干重被假設(shè)含有50%的蛋白質(zhì)。
混合培養(yǎng)的活動(dòng)在不同pH值通過測量氧攝取率確定(OUR)[10]?;旌吓囵B(yǎng)馴化在不同pH值,在20升硫化氫降解源生物滴濾,在OUR實(shí)驗(yàn)之前(見上文) 。收獲混合培養(yǎng)從包裝,泡沫立方體被沖擊,在50ml礦物媒介被搗好幾分鐘。該解決方法是離心在3000×克為15分鐘。顆粒含有硫化物降解菌的藥丸在5毫升礦物媒介被重新了懸掛。去離子水被放置在一個(gè)特制的取得保熱的玻璃容器裝有一氧電極(YSI,黃色泉水,OH)和與空氣在25 ?C后達(dá)到飽和,2.5毫升的混合培養(yǎng)順應(yīng)了在不同pH值(見以上)被安置了。內(nèi)源呼吸第一次被監(jiān)測后,在之后一種1.5毫克Na2S mL-1解答的0.2mL在礦物媒介在船被注射,以確定硫化OUR。內(nèi)源性呼吸從總的OUR被減去,以便獲得硫化物OUR。 PH值用Accumet PH計(jì)(Accumet模型15 ,F(xiàn)isher科學(xué),匹茲堡, PA )測量。
為變性梯度凝膠電泳法( DGGE ) 分析,細(xì)菌細(xì)胞由離心法(4000×g)和脫氧核糖核酸收獲提取與Bio101成套工具(BioRad)。DNA濃度測定與智能Spec3000分光光度表(BioRad),并保持凍結(jié)在-20 ?C,直至所需?;蚪MDNA PCRamplified是使用底漆放大16S ribosomal脫氧核糖核酸的V3地區(qū)的PRBA338F和PRUN518 [13]。組成聚合酶鏈反應(yīng)混合物中使用的所有反應(yīng)的是2.5升Tris (0.5 M,PH 8.3),2.5升氯化鎂(25mM),1.25升血清白蛋白( 10 mg / mL ),1.25升dNTPs (5mM ea),1 L每底漆(5 pmol/L), 0.25升基因Taq聚合酶( 5單位/升),1升模板DNA在無菌水中,且無菌水加了到最后的容量的25 L。脫氧核糖核酸在一PTC- 200塞貝克熱量Cycler (MJ Research Inc., MA,美國)被放大了下列程序:95?C的2分鐘,其次是由30個(gè)周期的92?C的1分鐘,55?C為30秒和72?C 1分鐘,和包括72 ?C 6 min.的唯一最后的引伸步。該DGGE分析,執(zhí)行了與8% (w/v)丙烯酰胺膠凝體在一個(gè)垂直梯度從20到70%變性劑(7M尿素加上40% (v/v)甲酰胺),凝膠被電力為3.5 h后60 ?C和200vin一dcode 通用突變檢測系統(tǒng)(BioRad)[14,15] 。膠凝體在數(shù)量一拍照文檔系統(tǒng)(BioRad)弄臟了與溴化乙錠并且被分析了。
3 結(jié)果與討論
3.1 氣速的影響
單一的泡沫塊從生物滴過濾器源頭被取出,當(dāng)在pH值為2或pH值為5運(yùn)作和放置在微分生物滴濾床時(shí),經(jīng)過一段短時(shí)間內(nèi),氣體速度是不同的,以確定其對硫化氫去除能力的影響。使用相同的泡沫立方體來測試整個(gè)各種氣體的速度,由于較早前經(jīng)歷[4],不同的泡沫冰塊的生物質(zhì)含量的差異的變異,是可避免的。重復(fù)進(jìn)行實(shí)驗(yàn)和結(jié)果在圖2被生物質(zhì)含量比較在兩個(gè)不同的pH值水平的清除正?;T趫D2 H2S的去除能力(0.2至0.9克gdw?1 h?1的相應(yīng)于約35至125 gm?3 h?1)報(bào)道,比在這個(gè)實(shí)驗(yàn)室做的之前的實(shí)驗(yàn)低,由于實(shí)驗(yàn)pH值為2 ,低于在外地[4,16]觀察到的。較低的EC可能是由于在泡沫立方體選定的這些實(shí)驗(yàn)生物數(shù)量的較低密度,直到圖2討論的趨勢才有進(jìn)一步的結(jié)果。除在8000mh-1點(diǎn)以外在溢流條件下被收集,結(jié)果表明,硫化氫去除能力似乎是一個(gè)氣體速度薄弱的功能,直至達(dá)到約4000 mh-1。一個(gè)依賴于氣體速度的解釋,是因?yàn)樯锏芜^濾器,測試了一些外部的傳質(zhì)限制在較低的氣體速度。調(diào)查結(jié)果表明,該表現(xiàn)硫化氫降解生物滴濾池操作在低氣速得以改善,增加外部傳質(zhì)。增加氣速增加公斤,氣膜傳質(zhì)系數(shù),或增加的具體表面積的包裝可以改善外部傳質(zhì)。硫化氫去除能力并沒有表現(xiàn)出顯著變動(dòng)在氣體速度4000和6000 mh-1之間。在這些條件下,硫化氫去除,必須是被控制的要么由生物降解動(dòng)力學(xué),運(yùn)輸,在液體或由擴(kuò)散的生物膜。沒有進(jìn)一步的詳細(xì)的實(shí)驗(yàn),因此難以確定誰是其中的這些進(jìn)程是限制。如前所述,該系統(tǒng)經(jīng)歷水浸時(shí),氣速超過8000 mh-1,和去除能力,是很不穩(wěn)定和受大變化都在一個(gè)實(shí)驗(yàn)與一個(gè)單一的泡沫立方體,或之間的實(shí)驗(yàn)與不同的泡沫塊??傊Y(jié)果圖2顯示了類似的,雖然不太明顯趨勢比介紹并討論了在早先的研究由作者[17]。原因之間的分歧研究并不清楚,但他們突出的復(fù)雜性硫化氫去除的高性能生物滴濾池。數(shù)據(jù)pH 5也被報(bào)告關(guān)于圖2,展覽顯著高硫化氫去除能力,這是違反什么是觀察到在外地的生物滴濾池在OCSD。非生物控制實(shí)驗(yàn)在pH 2和5 未顯示)導(dǎo)致在只有約20 %的高吸收率,在pH 5 比在低pH值。輕度更大的吸收是一致的與酸堿平衡的基礎(chǔ)硫化物,其中預(yù)測下面pH值6 ,溶解硫化物,基本上是目前的硫化氫而不是房協(xié)-或中S2-[18]。在本文,增加的表現(xiàn)在pH為5也許是混合培養(yǎng)的更加巨大的活動(dòng)的結(jié)果被開發(fā)在PH 5和以后被談?wù)摗?
3.2 滴濾液體速度的影響
在圖3,在2種不同氣體速度中可以引起液體滴濾速度的影響。該滴濾速度不影響在4000 mh-1H2S速率的去除,這關(guān)于上限空氣流速在外部傳質(zhì)限制,被認(rèn)為是發(fā)生的,但硫化氫去除能力與液體在高氣速下的滴濾速率成正比的,即在沒有外部傳質(zhì)限制。簡單的物理吸收硫化氫進(jìn)入增加液體流動(dòng)不能解釋觀測到的增加去除。進(jìn)一步討論觀察是有必要。生物滴濾池由三個(gè)階段組成:氣體,液體和生物膜。生物膜可以被液滴潤濕,或不被潤濕,即直接地與氣體經(jīng)歷處理接觸。按照以往的文件討論和模擬[4],H2S氣體首先轉(zhuǎn)變成液滴,然后轉(zhuǎn)變成濕生物膜,或直接轉(zhuǎn)變成不被潤濕地生物膜。因此,在確定硫化氫的去除能力時(shí),潤濕的,流動(dòng)的傳質(zhì)參數(shù)可能是關(guān)鍵因素。Onda等人[19]確定潤濕純粹與液體的速度有關(guān),因此圖3可以被視為影響了不同程度的生物膜潤濕。即使如此,有人問氣體速度在潤濕條件是否不應(yīng)該發(fā)揮作用,特別是在高氣速和在填料與狹窄的開口,因?yàn)槲覀儼l(fā)現(xiàn),高氣速會影響液體爬升,因此也可能影響液體流動(dòng)的模式。然而,一個(gè)可能的解釋見如下圖3的結(jié)果。在低氣速,外部傳質(zhì)是主要的限制因素,因此,在液體流動(dòng)速度變化中去除能力是不受影響的。在高氣速,外部傳質(zhì)阻力變得微不足道,但由液體向生物膜的轉(zhuǎn)變受限制。被滴濾液體限制的可能原因是液體輸送,泡沫立方體的非均勻噴灑,部分潤濕和由于泡沫立方體的結(jié)構(gòu)積水。因?yàn)檫@些可能是由于增加滴濾速度,增加滴濾速度導(dǎo)致硫化氫去除能力增加而被改變。通過其他方式核查上述解釋,去除硫化氫的決心是值得的。
3.3 中間硫物種的影響
加入各種硫物種到滴濾液體中的影響被調(diào)查。加入溶解的鈉硫化物(每升1-3.5毫克S,結(jié)果未顯示),導(dǎo)致在pH值為1.9-2.1時(shí)H2S氣體的降解停留一段時(shí)間。硫化物是溶解的硫化氫離子形式,但很快會均衡與任何形式的S是由微生物種群利用;因此,在生物降解中增加了硫化鈉競爭與H2S氣體。奇怪的是,此外微量硫代(每升0.7-7毫克S調(diào)整到一個(gè)pH值為1.9-2.1),導(dǎo)致硫化氫的去除率提高5-30%(圖4)。以前的實(shí)驗(yàn)是在傳統(tǒng)的生物滴濾池,由其他人在我們的實(shí)驗(yàn)室(施特勞斯和德敘斯, 2003年,未出版),發(fā)現(xiàn)脈沖硫代硫酸鈉(每升300-350毫克S)對硫化氫去除有一個(gè)顯著抑制,而不是提高去除。然而,后者在比較高的濃度下進(jìn)行了實(shí)驗(yàn),這是極有可能的,有些生物動(dòng)力競爭為何發(fā)生。增加微量硫代的結(jié)果引起極大興趣,因?yàn)樗麄冿@示生物滴濾池中加入微量硫代后,H2S降解的性能可加以改進(jìn)。
增加了亞硫酸鹽和硫酸鹽的結(jié)果顯示在圖5。被注射的亞硫酸鹽和硫酸鹽的數(shù)量是正常運(yùn)作期間測量的5倍濃度。亞硫酸鹽的痕跡對過程沒有影響(圖5)。同樣地,注射高達(dá)每升2450毫克S的硫酸對硫化氫的去除無顯著效應(yīng)(圖5)。后者與由楊和Allen [20]發(fā)現(xiàn)的結(jié)果一致,楊和Allen沒有看到硫酸在一個(gè)生物濾池直至孔隙水硫酸濃度高達(dá)每升15000毫克S時(shí)抑制作用。調(diào)查結(jié)果表明硫酸的積累,H2S生物降解的最終產(chǎn)物這一過程是不敏感的。硫酸鹽積累不靈敏是對于在一個(gè)比較大范圍的硫酸濃度存在的領(lǐng)域的實(shí)際應(yīng)用是很有用的知識。
3.4 生物動(dòng)力參數(shù)分析
正如圖2討論,在氣體速度為4000 和6000mh-1之間,外部傳質(zhì)不被認(rèn)為是顯著地限制,因此,在微分生物滴濾池一段時(shí)間內(nèi)硫化氫的減少可以用來確定硫化氫生物降解速率對硫化氫的氣體濃度,從而獲得米歇里斯-門坦類型基址。在圖6(a)表明了結(jié)果和顯示硫化氫的速率消除恒定在約0.2克每立方米以上硫化氫,也就是說,150 ppm,而下跌的線性濃度低于這個(gè)水平,在這兩個(gè)區(qū)域之間幾乎沒有過渡。與在一個(gè)攪拌式反應(yīng)器中硫化氫的消除作比較,通過從一個(gè)降解硫化氫的泡沫立方體中提取出來的懸浮的細(xì)菌。合理的比較是為了避免任何液相擴(kuò)散阻力,當(dāng)一批培養(yǎng)基液體是被攪拌得很均勻和細(xì)菌被細(xì)分散的時(shí)候。在液體培養(yǎng)基中硫化氫的去除率比在生物滴濾池中的低10倍,和速率出現(xiàn)遵循兩個(gè)不同的線性制度,這制度取決于H2S濃度轉(zhuǎn)變到約0.07克每立方米。低速率一個(gè)可能的解釋是在氣膜傳質(zhì)系數(shù)是有區(qū)別的,在兩個(gè)系統(tǒng)之間,以及在氣液界面區(qū)(0.038平方米泡沫立方體和0.013平方米液體反應(yīng)器),這氣液界面區(qū)可能限制硫化氫傳輸從被攪拌的液體反應(yīng)器最上方空間。那個(gè)復(fù)雜的行為,以及決定這兩個(gè)生物反應(yīng)器系統(tǒng)的生物動(dòng)力參數(shù)之間被觀察到的差異,表明還需要進(jìn)一步研究,以便在缺乏物質(zhì)傳輸或擴(kuò)散限制時(shí)確定內(nèi)在生物動(dòng)力參數(shù)。這將有助于模仿過程和優(yōu)化H2S的去除速率。
正如前面討論過,PH值是一個(gè)重要的參數(shù),因?yàn)樗绊懼⑸飳W(xué)過程及硫化氫的酸堿基平衡。圖2中生物滴濾結(jié)果表明了對于不同的PH值硫化氫的去除有顯著的差異。因此,生物動(dòng)力分析被實(shí)施用來確定在間歇式反應(yīng)器不同的pH值硫化物的生物降解活性在每一個(gè)培養(yǎng)器如何被馴化,及用OUR衡量培養(yǎng)的活性與對于不同pH值不同生物滴濾池的性能作對比(圖7)。隨pH值由2至近中性,生物降解活性(取決于OUR所引起的硫化物)增加約5倍,表明,在本質(zhì)上混合培養(yǎng)增長至近中性pH值更有效。通過DGGE(圖8)混合培養(yǎng)組成的進(jìn)一步試驗(yàn)顯示DNA帶模式有一些相似之處,但較大不同。被別人觀察的空間差異[ 21]可以被排除,因?yàn)樗械呐菽鶋K收集從進(jìn)氣道的二十升源在不同pH值運(yùn)作的生物滴濾池。因此,圖8中所描繪的該微生物群落的差異性是由于不同pH值下分化的細(xì)胞生長引起的。在不同的pH值進(jìn)化的微生物群體的更詳細(xì)分析將是必要的,以確定圖8中該DNA帶展示的變化是那些硫化氫降解的有機(jī)體,還是那些次降解物 。然而,圖8結(jié)果與事實(shí)相一致,這事實(shí)是不同的硫化物氧化細(xì)菌有不同的優(yōu)化pH值增長[22],以及最近那些人口數(shù)的一些變化可被預(yù)計(jì)。盡管,圖7和圖8的結(jié)果支持不同的細(xì)菌種群在近中性pH值下運(yùn)作的生物滴濾池的較好性能具有可信賴的這一解釋。正如此前提到,從實(shí)地調(diào)查研究結(jié)果[23]表明,在低pH值運(yùn)作會顯著地導(dǎo)致更好的硫化氫去除性能。這一矛盾建議,進(jìn)一步研究是需要調(diào)和實(shí)驗(yàn)室規(guī)模和領(lǐng)域的結(jié)果。
4 結(jié)論
在高性能生物滴濾器中,硫化氫和惡臭氣的生物處理仍然有大量的未知數(shù)。在這里所介紹和討論的類型的詳細(xì)的應(yīng)用研究,更好地理解在生物滴濾器中污染物的傳輸和生物降解,以及確定適當(dāng)手段盡可能地優(yōu)化性能。比如,外部的傳質(zhì)可發(fā)揮一重要的作用這一發(fā)現(xiàn)沒有得到廣泛報(bào)道。在設(shè)計(jì)生物滴濾池,在生物滴濾器中污染物的傳質(zhì),以及傳質(zhì)限制的程度最終可能激勵(lì)劇變,這是值得進(jìn)一步調(diào)查。
參考文獻(xiàn)
[1] J.S. Devinny, M.A. Deshusses, T.S. Webster, Biofiltration for Air Pollution Control, Lewis Publishers, Boca Raton, FL, 1999,300 pp.
[2] J.W. Groenestijn, P.G.M. Van Hesselink, Biotechniques for air pollution control, Biodegradation 4 (1993) 283–301.
[3] D. Gabriel, H.H.J. Cox, J. Brown, E. Torres, M.A. Deshusses, Biotrickling filters for POTWs air treatment: Full-scale experience with a converted scrubber, in: Proceedings of Odors and Toxic Air Emissions, Water Environment Federation, Alexandria, VA, April 28–May 1 2002.
[4] S. Kim, M.A. Deshusses, Development and experimental validation of a conceptual model for H2S biotrickling filtration, Environ. Prog.22 (2003) 119–128.
[5] C.J. Buisman, B.G. Geraats, P. Ljspeert, G. Lettinga, Optimization of sulphur production in a biotechnological sulphide-removing reactor, Biotechnol. Bioeng.35 (1990) 50–56.
[6] Y.Chung, C. Huang, C. Tseng, Operation optimization of Thiobacillus thioparus CH11 biofilter for hydrogen sulfide removal, J.Biotechnol.52 (1996) 31–38.
[7] R. Islander, J.S. Devinny, F. Mansfeld, A. Postyn, H. Shih, Microbial ecology of crown corrosion in sewers, J. Environ. Eng. 117 (1991)751–770.
[8] R.J. Huxtable, W.M. Lafranconi, Biochemistry of Sulfur, Plenum Press, New York, NY, 1986, 445 pp.
[9] H.H.J. Cox, M.A. Deshusses, Biomass control in waste air biotrickling filters by protozoan predation, Biotechnol. Bioeng. 62 (1999)216–224.
[10] H.H.J. Cox, M.A. Deshusses, Co-treatment of H2S and toluene in abiotrickling filter, Chem. Eng. J. 3901 (2001) 1–10.
[11] D. Herbert, P.J. Phipps, J.E. Strange, Chemical analysis of microbial cells, in: J.R. Norris, D.W. Ribbons (Eds.), Methods in Microbiology, vol. 5B, Academic Press, New York, NY, 1971.
[12] P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D. Provenzano, E.K. Fujimoto, N.M. Goeke, B.J. Olson, D.C. Klenk, Measurement of protein using biocinchoninic acid, Anal. Biochem. 150 (1985) 76–85.
[13] L. Ovreas, L. Forney, F.L. Daae, V. Torsvik, Distribution of bacterioplancton in Meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCT-amplified gene fragments coding for 16S rRNA, Appl. Environ. Microbiol. 63 (1997)3367–3373.
[14] C.H.Yang, D.E.Crowley, Rhizosphere microbial community structure in relation to root location and plant iron nutritional status, Appl. Environ. Microbiol. 66 (2000) 345–351.
[15] G.Muyzer,K. Smalla, Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology, Antonie Van Leeuwenhoek Int. J.Gen. Mol. Microbiol.73 (1998) 127–141.
[16] D. Gabriel, M.A. Deshusses, Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control, in: Proceeding of the National Academy of Sciences, vol. 100, 2003, pp. 6308–6312.
[17] S. Kim, M.A. Deshusses, Modeling H2S biotrickling filtration, in:F.E. Reynolds (Ed.), Proceedings of the 2002 Conference on Biofiltration, The Reynolds Group, Tustin, CA, October 31–November 12002.
[18]R.P.Bowker,J.M.Smith,N.A.Webster,Odor Corrosion Control in Sanitary SewerageSystems and Treatment Plants,Noyes Publications,Norwich,NY,1989,130 pp.
[19] K. Onda, H. Takeuchi, Y. Okumoto, Mass transfer coefficients between gas and liquid phases in packed columns, J. Chem. Eng. Jpn.1 (1968) 56–62.
[20] Y. Yang, E.R. Allen, Biofiltration control of hydrogen sulfide 1. Design and operational parameters, J. Air Waste Manage. Assoc. 44(1994) 863–868.
[21] C. Li, W.M. Moe, Assessment of microbial populations in methyl ethyl ketone degrading biofilters by denaturing gradient gel electrophoresis, Appl. Microbiol. Biotechnol. 64 (2004) 568–575.
[22] A.B. Roy, P.A. Trudinger, The Biochemistry of Inorganic Compounds of Sulphur, Cambridge University Press, London, UK, 1970,400 pp.
[23] D. Gabriel, M.A. Deshusses, Performance of a full-scale biotrickling filter treating H2S at a gas contact time of 1.6–2.2 s, Environ. Prog.22 (2003) 111–118.
Chemical Engineering Journal 113 (2005) 119–126
Understanding the limits of H2S degrading biotrickling filters using a differential biotrickling filter
Seongyup Kim, Marc A. Deshusses *
Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
Received 12 January 2005; received in revised form 29 April 2005; accepted 1 May 2005
Abstract
The removal of H2S in high performance biotrickling filters was investigated using a differential biotrickling filter. The differential biotrickling filter was designed to reach high gas velocities through a minature packed bed, in this case a single 4-cm open-pore polyurethane foam cube. External mass transfer was limiting below air velocities of 3000–4000 mh-1, with possible other parameters such as biological kinetics or diffusion-controlled performance above 4000mh-1. The effect of the liquid trickling rate on H2S elimination was found to be nil at low gas velocity, and significant at high gas velocity, consistent with speculations on the wetting of the packing and the rate-limiting step at the conditions of the experiments. The effect of additions of various species of sulfur on H2S treatment was investigated. Sulfide negatively affected H2S removal, while sulfate and sulfite had no effect. Interestingly, traces of thiosulfate resulted in improved H2S removal rates. Cell activity assessed by oxygen-uptake rate determinations was the greatest at near neutral pH. Finally, biokinetic parameters for H2S elimination obtained in the differential biotrickling filter and in a batch suspended culture were compared. The rates in the differential biotrickling filter were much higher, indicating that the batch reactor was subject to mass transfer limitation, and illustrating that the biokinetic parameters determined in shake flask systems may not necessarily apply in biotrickling filters. Overall, the study highlights that a differential biotrickling filter is a useful tool for investigating the performance and limits of H2S biotrickling filtration, and that detailed studies help in understanding the mechanisms of pollutant removal in biotrickling filters.
? 2005 Elsevier B.V. All rights reserved.
Keywords:Biotrickling filter, H2S degrading,Biokinetic parameters
1. Introduction
Emission of objectionable odors is a major problem for wastewater treatment and other processing facilities. Biological treatment is an established alternative to conventional odor control methods [1,2], but until recently biotreatment always required significantly larger reactor volumes than chemical scrubbers. In 2001, five full-scale chemical scrubbers were converted to biotrickling filters at the Orange County Sanitation District (OCSD) and have since been operated at gas contact times ranging from 1.6 to 4 s, which are similar to contact times for chemical scrubbers [3]. Even at very short contact times, H2S removal was in excess of 97% for inlet H2S concentrations as high as 30–50 ppmv. The corresponding volumetric elimination rates of H2S are 95–105 g H2S m-3h-1. Compared with other biofilters or biotrickling filters treating concentrations of H2S in the range of 50 ppmv or less, the elimination rate is large [1,4]. Possible explanations for the unusually high performance observed at OCSD are the high pollutant mass transfer rate due to the large surface area of the packing, an extremely high gas linear velocity (1.8ms-1or 6500mh-1) and optimum operating conditions (nutrients, pH, CO2). The unconventional conditions of the biotrickling filters at OCSD suggest that study of the limits of H2S-degrading biotrickling filters can lead to a better understanding of the process, and to optimization of their performance.In particular, mass transfer and H2S biodegradation kinetics in high performance biotrickling filters require further definition. Hence, the present study focused on the effects of selected parameters on the performance of H2S -degrading biotrickling filters. A differential biotrickling filter described earlier [4] was used for these experiments.
During biotreatment, H2S is oxidized by bacteria to SO42-. H2S or its ionic forms HS? or S2? are used as energy source by litho-autotrophic bacteria, which require carbon dioxide or dissolved carbonate as a carbon source. There are several possible intermediate sulfur species such as S0, S2O32? and SO32? that may be produced during the oxidation process [5]. Their production depends on the H2S loading, pH, bacteria, oxygen concentration and temperature[5–8], however, little is known about the biokinetic factors and possible inhibitions that govern the conversion of H2S to its end-product. A better definition of these relationships could help in understanding the limits of the process. Also, in industry, conditions may result in a sudden excess amount of one or more of the intermediate sulfur species which is expected to affect treatment performance, but again little is known about the response of biotrickling filters to such exposure.The impact of the various sulfur species is expected to vary depending on the rate-limiting step of the process, therefore, studies on the effect of sulfur species on biotreatment should be closely linked with mass transfer studies. Thus, the objectives of this study were (1) to determine the effect of gas velocity on the performance of a H2S-degrading biotrickling filter using a differential biotrickling filter; (2) to determine the effect of operational parameters and a sudden increase of selected sulfur species on the performance of a H2S biotrickling filter at low and high gas velocities;(3) to determine biokinetic parameters in a biotrickling filter and compare them to those obtained in a batch stirred-tank bioreactor.
2. Materials and methods
2.1. Differential biotrickling filter equipment and operation
A small differential biotrickling filter was used in this study. It was filled with a single cube (4 cm×4 cm×4 cm) of open-pore polyurethane foam packing (EDT, Eckental, Germany) identical to the packing used in the field study at the Orange County Sanitation District. The foam cube placed in the differential biotrickling filter was taken from a conventional biotrickling filter (see below) operated in a laboratory with H2S as the sole pollutant, hence, the foam cube had an already established active biofilm of H2S-oxidizing