2019屆高三數(shù)學(xué)12月月考試題 文 (III).doc
《2019屆高三數(shù)學(xué)12月月考試題 文 (III).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019屆高三數(shù)學(xué)12月月考試題 文 (III).doc(11頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019屆高三數(shù)學(xué)12月月考試題 文 (III) 注意事項(xiàng): 1.答題時(shí),先將自己的姓名、準(zhǔn)考證號填寫在試卷和答題卡上,并將準(zhǔn)考證號條形碼貼在答題卡上的指定位置。 2.選擇題的作答:每小題選出答案后,用2B鉛筆把答題卡上對應(yīng)題目的答案涂黑。寫在試題卷、草稿紙和答題卡上的非答題區(qū)域均無效。 3.填空題和解答題的作答:用黑色簽字筆直接答在答題卡上對應(yīng)的答題區(qū)域內(nèi)。寫在試題卷、草稿紙和答題卡上的非答題區(qū)域均無效。 4.選做題的作答:先把所做題目的題號在答題卡上指定的位置用2B鉛筆涂黑。答案寫在答題卡上對應(yīng)的答題區(qū)域內(nèi)。寫在試題卷、草稿紙和答題卡上的非答題區(qū)域均無效。 5.考試結(jié)束后,請將答題卡上交; 第Ι卷(選擇題部分,共60分) 一、選擇題:本大題共12小題,每小題5分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的. 1. 設(shè)全集,則中整數(shù)元素的個(gè)數(shù)為( ) A. B. C. D. 2. 若復(fù)數(shù)滿足,則( ) A. B. C. D. 3.若, , ,則, , 的大小關(guān)系是( ) A. B. C. D. 4. 下列有關(guān)命題的說法正確的是( ) A. 命題“若,則”的否命題為:“若,則”. B. 若為真命題,則均為真命題. C. 命題“存在,使得” 的否定是:“對任意,均有”. D. 命題“若,則”的逆否命題為真命題. 5.某幾何體的三視圖如圖所示,其中主視圖,左視圖均是由三角形與半圓構(gòu)成,俯視圖由圓與內(nèi)接三角形構(gòu)成,則該幾何體的體積為( ) A. B. C. D. 6.古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù),例如: 他們研究過圖中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù),由以上規(guī)律,則這些三角形數(shù)從小到大形成一個(gè)數(shù)列{an},那么a10的值為( ?。? A.45 B.55 C.65 D.66 7. 秦九韶算法是我國古代算籌學(xué)史上光輝的一筆,它把一元次多項(xiàng)式的求值轉(zhuǎn)化為個(gè)一次式的運(yùn)算,即使在計(jì)算機(jī)時(shí)代,秦九韶算法仍然是高次多項(xiàng)式求值的最優(yōu)算法,其算法如圖所示,若輸入的,,,,分別為,,,,,則該程序框圖輸出的值為( ) A. B. C. D. 8. 函數(shù)圖象的大致形狀是( ) A. B. C. D. 9.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分圖象如圖所示,若將f(x)圖象上所有點(diǎn)的橫坐標(biāo)縮短來原來的倍(縱坐標(biāo)不變),得到函數(shù)g(x)的圖象,則g(x)的解析式為( ?。? A.y=sin(4x+) B.y=sin(4x+) C.y=sin(x+) D.y=sin(x+) 10. 若在中,,其外接圓圓心滿足,則( ) A. B. C. D. 11.已知函數(shù),若關(guān)于的方程有唯一實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是( ) A. B. C. D. 12. 若函數(shù)的圖象上存在不同的兩點(diǎn),使得函數(shù)的圖象在這兩點(diǎn)處的切線的斜率之和等于常數(shù)t,則稱函數(shù) 為“t函數(shù)”.下列函數(shù)中為“t函數(shù)”的是 ① ②③ ④ A. ① ② B. ③④ C. ①③ D. ②④ 第Ⅱ卷 (非選擇題 共90分) 二、填空題:本題共4題,每小題5分,共20分。 13.若平面向量滿足,則向量與的夾角為 . 14. 設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最大值為 . 15.在邊長為的等邊中,點(diǎn)為外接圓的圓心,則 . 16.已知,若的圖像關(guān)于點(diǎn)對稱的圖像對應(yīng)的函數(shù)為,則的表達(dá)式為 . 三、解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟. 17. (本題滿分12分)已知數(shù)列滿足,. (1)求數(shù)列的通項(xiàng)公式; (2)設(shè)數(shù)列,求數(shù)列的前項(xiàng)和. 18. (本題滿分12分)如圖四邊形ABCD為菱形,G為AC與BD交點(diǎn),, (I)證明:平面平面; (II)若, 三棱錐的體積為,求該三棱錐的側(cè)面積. 19.(本題滿分12分) 在成績統(tǒng)計(jì)中,我們把某個(gè)同學(xué)的某科考試成績與該科班平均分的差叫某科偏差,班主任為了了解個(gè)別學(xué)生的偏科情況,對學(xué)生數(shù)學(xué)偏差(單位:分)與物理偏差(單位:分)之間的關(guān)系進(jìn)行偏差分析,決定從全班40位同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析,得到他們的兩科成績偏差數(shù)據(jù)如下: (1)已知與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程; (2)若這次考試該班數(shù)學(xué)平均分為120分,物理平均分為92分,試預(yù)測數(shù)學(xué)成績126分的同學(xué)的物理成績. 參考公式:,, 參考數(shù)據(jù):,. 20. (本題滿分12分)己知函數(shù),函數(shù) . (1) 求時(shí)曲線在點(diǎn)處的切線方程; (2) 設(shè)函數(shù)在上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍. 21.(本題滿分12分) 已知,. (1)若在恒成立,求的取值范圍; (2)若有兩個(gè)極值點(diǎn),,求的范圍并證明. 請考生在22、23兩題中任選一題作答,如果多做,則按所做的第一題記分. 22.(本題滿分19分) 選修4-4:坐標(biāo)系與參數(shù)方程 在極坐標(biāo)系中,曲線C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C與l有且僅有一個(gè)公共點(diǎn). (Ⅰ)求a; (Ⅱ)O為極點(diǎn),A,B為C上的兩點(diǎn),且∠AOB=,求|OA|+|OB|的最大值. 23. (本題滿分10分)選修4-5:不等式選講 設(shè)函數(shù). (1)求的最小值及取得最小值時(shí)的取值范圍; (2)若不等式的解集為,求實(shí)數(shù)的取值范圍. 成都龍泉二中xx級高三上學(xué)期12月月考試題 數(shù)學(xué)(文)參考答案 1—5 BBCDA 6—10 BBBAA 11—12 AB 13. 14. 2 15. 16. 17.【答案】(1) (2) 【解析】分析:累加法求數(shù)列的通項(xiàng)公式;裂項(xiàng)相消法求和 (1)由已知, ∴ , ∴, ∴. (2), , ∴ . 18.【答案】(1)見解析(2)3+2. 【解析】 試題分析:(Ⅰ)由四邊形ABCD為菱形知ACBD,由BE平面ABCD知ACBE,由線面垂直判定定理知AC平面BED,由面面垂直的判定定理知平面平面;(Ⅱ)設(shè)AB=,通過解直角三角形將AG、GC、GB、GD用x表示出來,在AEC中,用x表示EG,在EBG中,用x表示EB,根據(jù)條件三棱錐的體積為求出x,即可求出三棱錐的側(cè)面積. 試題解析:(Ⅰ)因?yàn)樗倪呅蜛BCD為菱形,所以ACBD, 因?yàn)锽E平面ABCD,所以ACBE,故AC平面BED. 又AC平面AEC,所以平面AEC平面BED (Ⅱ)設(shè)AB=,在菱形ABCD中,由ABC=120,可得AG=GC= ,GB=GD=. 因?yàn)锳EEC,所以在AEC中,可得EG= . 由BE平面ABCD,知EBG為直角三角形,可得BE=. 由已知得,三棱錐E-ACD的體積.故=2 從而可得AE=EC=ED=. 所以EAC的面積為3,EAD的面積與ECD的面積均為. 故三棱錐E-ACD的側(cè)面積為. 19.【答案】(1)(2)預(yù)測這位同學(xué)的物理成績?yōu)?4分 【解析】 試題分析: (1)根據(jù)所給數(shù)據(jù)及公式可求得,,即可得到關(guān)于的線性回歸方程;(2)設(shè)出物理成績,可得物理偏差為,又?jǐn)?shù)學(xué)偏差為,代入回歸方程可求得。 試題解析: (1)由題意計(jì)算得,, ∴ ∴ , 故線性回歸方程為 (2)由題意設(shè)該同學(xué)的物理成績?yōu)椋? 則物理偏差為,而數(shù)學(xué)偏差為, 則(1)的結(jié)論可得, 解得, 故可以預(yù)測這位同學(xué)的物理成績?yōu)榉? 20.【答案】(Ⅰ) (Ⅱ) 【解析】試題分析:(1) 當(dāng)時(shí),,求出即得解,(2)因?yàn)楹瘮?shù)在上是單調(diào)函數(shù),所以或,變量分離可求得k的范圍. 試題解析: (1)當(dāng)時(shí),, , 所以,又, 所以曲線在點(diǎn)處的切線方程為; (2) 因?yàn)楹瘮?shù)在上是單調(diào)函數(shù),所以或 由得, 所以,,所以; 由得,所以,而, 所以,所以. 綜上所述: 實(shí)數(shù)的取值范圍是.21.【答案】(1) (2) 證明見解析 【解析】【試題分析】(1)將原不等式分離常數(shù)得到,構(gòu)造函數(shù),利用二階導(dǎo)數(shù)求得的最小值,由此求得的取值范圍.(2)求得的階導(dǎo)數(shù)和階導(dǎo)數(shù),將分類討論函數(shù)的單調(diào)區(qū)間,求得,并求得函數(shù)的單調(diào)區(qū)間和極值點(diǎn)的大小.化簡,由此證得 【試題解析】 (1)由題:得: 設(shè), 設(shè):, 在單增, 在單增, (2) ,, ①若時(shí), 知: 在單調(diào)遞增,不合題意. ②若時(shí), 知:在單調(diào)遞增,在單調(diào)遞減 只需要 此時(shí)知道:在單減,單增,單減, 且易知: 又由 又 22.【答案】(1)1(2) 【解析】 試題分析(I)把圓與直線的極坐標(biāo)方程分別化為直角坐標(biāo)方程,利用直線與圓相切的性質(zhì)即可得出a; (II)不妨設(shè)A的極角為θ,B的極角為θ+,則|OA|+|OB|=2cosθ+2cos(θ+)=2cos(θ+),利用三角函數(shù)的單調(diào)性即可得出. 解:(Ⅰ)曲線C:ρ=2acosθ(a>0),變形ρ2=2ρa(bǔ)cosθ,化為x2+y2=2ax,即(x﹣a)2+y2=a2. ∴曲線C是以(a,0)為圓心,以a為半徑的圓; 由l:ρcos(θ﹣)=,展開為, ∴l(xiāng)的直角坐標(biāo)方程為x+y﹣3=0. 由直線l與圓C相切可得=a,解得a=1. (Ⅱ)不妨設(shè)A的極角為θ,B的極角為θ+, 則|OA|+|OB|=2cosθ+2cos(θ+) =3cosθ﹣sinθ=2cos(θ+), 當(dāng)θ=﹣時(shí),|OA|+|OB|取得最大值2. 23.【答案】(1)最小值為3,此時(shí)(2) 【解析】 分析:(1)利用絕對值三角不等式,求得的最小值,以及取得最小值時(shí)x的取值范圍;(2)當(dāng)不等式的解集為,函數(shù)恒成立,即的圖象恒位于直線的上方,數(shù)形結(jié)合求得的取值范圍. 詳解:(1)∵函數(shù), 故函數(shù)的最小值為3, 此時(shí); (2)當(dāng)不等式的解集為,函數(shù)恒成立, 即的圖象恒位于直線的上方, 函數(shù), 而函數(shù)表示過點(diǎn),斜率為的一條直線, 如圖所示:當(dāng)直線過點(diǎn)時(shí),, ∴, 當(dāng)直線過點(diǎn)時(shí),,∴, 數(shù)形結(jié)合可得的取值范圍為.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019屆高三數(shù)學(xué)12月月考試題 III 2019 屆高三 數(shù)學(xué) 12 月月 考試題 III
鏈接地址:http://m.kudomayuko.com/p-4338530.html