(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 第二層級(jí) 重點(diǎn)增分 專題十三 統(tǒng)計(jì)、統(tǒng)計(jì)案例講義 理(普通生含解析).doc
《(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 第二層級(jí) 重點(diǎn)增分 專題十三 統(tǒng)計(jì)、統(tǒng)計(jì)案例講義 理(普通生含解析).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 第二層級(jí) 重點(diǎn)增分 專題十三 統(tǒng)計(jì)、統(tǒng)計(jì)案例講義 理(普通生含解析).doc(15頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
重點(diǎn)增分專題十三 統(tǒng)計(jì)、統(tǒng)計(jì)案例 [全國(guó)卷3年考情分析] 年份 全國(guó)卷Ⅰ 全國(guó)卷Ⅱ 全國(guó)卷Ⅲ 2018 統(tǒng)計(jì)圖的識(shí)別與分析T3 折線圖、線性回歸方程模型問題T18 莖葉圖的應(yīng)用及獨(dú)立性檢驗(yàn)T18 2017 頻率分布直方圖、獨(dú)立性檢驗(yàn)T18 折線圖的識(shí)別與分析T3 2016 統(tǒng)計(jì)圖表的識(shí)別與分析T4 折線圖、相關(guān)性檢驗(yàn)、線性回歸方程及其應(yīng)用T18 (1)統(tǒng)計(jì)與統(tǒng)計(jì)案例在選擇題或填空題中的命題熱點(diǎn)主要集中在隨機(jī)抽樣、用樣本估計(jì)總體以及變量間的相關(guān)性判斷等,難度較低,常出現(xiàn)在3~4題的位置. (2)統(tǒng)計(jì)與統(tǒng)計(jì)案例在解答題中多出現(xiàn)在18或19題,多考查直方圖、莖葉圖及數(shù)字特征計(jì)算、統(tǒng)計(jì)案例的應(yīng)用. 保分考點(diǎn)練后講評(píng) 1.福利彩票“雙色球”中紅球的號(hào)碼可以從01,02,03,…,32,33這33個(gè)兩位號(hào)碼中選取,小明利用如下所示的隨機(jī)數(shù)表選取紅色球的6個(gè)號(hào)碼,選取方法是從第1行第9列的數(shù)字開始,從左到右依次讀取數(shù)據(jù),則第四個(gè)被選中的紅色球號(hào)碼為( ) 81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85 06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49 A.12 B.33 C.06 D.16 解析:選C 被選中的紅色球號(hào)碼依次為17,12,33,06,32,22.所以第四個(gè)被選中的紅色球號(hào)碼為06,故選C. 2.某電視臺(tái)在因特網(wǎng)上就觀眾對(duì)其某一節(jié)目的喜愛程度進(jìn)行調(diào)查,參加調(diào)查的一共有20 000人,其中各種態(tài)度對(duì)應(yīng)的人數(shù)如下表所示: 最喜愛 喜愛 一般 不喜歡 4 800 7 200 6 400 1 600 電視臺(tái)為了了解觀眾的具體想法和意見,打算從中抽選100人進(jìn)行更為詳細(xì)的調(diào)查,為此要進(jìn)行分層抽樣,那么在分層抽樣時(shí),每類人中應(yīng)抽選的人數(shù)分別為( ) A.25,25,25,25 B.48,72,64,16 C.20,40,30,10 D.24,36,32,8 解析:選D 因?yàn)槌闃颖葹椋剑? 所以每類人中應(yīng)抽選的人數(shù)分別為4 800=24,7 200=36,6 400=32, 1 600=8.故選D. 3.某班共有學(xué)生56人,學(xué)號(hào)依次為1,2,3,…,56,現(xiàn)用系統(tǒng)抽樣的方法抽取一個(gè)容量為4的樣本,已知學(xué)號(hào)為2,30,44的同學(xué)在樣本中,則樣本中還有一位同學(xué)的學(xué)號(hào)為________. 解析:由題意得,將56人按學(xué)號(hào)從小到大分成4組,則分段間隔為14,所以抽取的學(xué)號(hào)依次為2,16,30,44,故還有一位同學(xué)的學(xué)號(hào)為16. 答案:16 [解題方略] 系統(tǒng)抽樣和分層抽樣中的計(jì)算 (1)系統(tǒng)抽樣 ①總體容量為N,樣本容量為n,則要將總體均分成n組,每組個(gè)(有零頭時(shí)要先去掉). ②若第一組抽到編號(hào)為k的個(gè)體,則以后各組中抽取的個(gè)體編號(hào)依次為k+,…,k+(n-1). (2)分層抽樣 按比例抽樣,計(jì)算的主要依據(jù)是:各層抽取的數(shù)量之比=總體中各層的數(shù)量之比. 保分考點(diǎn)練后講評(píng) [大穩(wěn)定] 1.某課外小組的同學(xué)們?cè)谏鐣?huì)實(shí)踐活動(dòng)中調(diào)查了20戶家庭某月的用電量,如下表所示: 用電量/度 120 140 160 180 200 戶數(shù) 2 3 5 8 2 則這20戶家庭該月用電量的眾數(shù)和中位數(shù)分別是( ) A.180,170 B.160,180 C.160,170 D.180,160 解析:選A 用電量為180度的家庭最多,有8戶,故這20戶家庭該月用電量的眾數(shù)是180;將用電量按從小到大的順序排列后,處于最中間位置的兩個(gè)數(shù)是160,180,故這20戶家庭該月用電量的中位數(shù)是170.故選A. 2.甲、乙兩名同學(xué)在7次數(shù)學(xué)測(cè)試中的成績(jī)?nèi)缜o葉圖所示,其中甲同學(xué)成績(jī)的眾數(shù)是85,乙同學(xué)成績(jī)的中位數(shù)是83,則成績(jī)較穩(wěn)定的是________. 解析:根據(jù)眾數(shù)及中位數(shù)的概念易得x=5,y=3,故甲同學(xué)成績(jī)的平均數(shù)為=85,乙同學(xué)成績(jī)的平均數(shù)為=85,故甲同學(xué)成績(jī)的方差為(49+36+25+49+121)=40,乙同學(xué)成績(jī)的方差為(169+16+16+4+36+36+121)=>40,故成績(jī)較穩(wěn)定的是甲. 答案:甲 3.為了解一種植物果實(shí)的情況,隨機(jī)抽取一批該植物果實(shí)樣本測(cè)量重量的數(shù)據(jù)(單位:克),按照[27.5,32.5),[32.5,37.5),[37.5,42.5),[42.5,47.5),[47.5,52.5]分為5組,其頻率分布直方圖如圖所示. (1)求圖中a的值; (2)估計(jì)這種植物果實(shí)重量的平均數(shù)和方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表). 解:(1)由5(0.020+0.040+0.075+a+0.015)=1,得a=0.050. (2)各組中點(diǎn)值和相應(yīng)的頻率依次為 中點(diǎn)值 30 35 40 45 50 頻率 0.1 0.2 0.375 0.25 0.075 =300.1+350.2+400.375+450.25+500.075=40, s2=(-10)20.1+(-5)20.2+020.375+520.25+1020.075=28.75. [解題方略] 1.方差的計(jì)算與含義 (1)計(jì)算:計(jì)算方差首先要計(jì)算平均數(shù),然后再按照方差的計(jì)算公式進(jìn)行計(jì)算. (2)含義:方差是描述一個(gè)樣本和總體的波動(dòng)大小的特征數(shù),方差大說明波動(dòng)大. 2.從頻率分布直方圖中得出有關(guān)數(shù)據(jù)的方法 頻率 頻率分布直方圖中橫軸表示組數(shù),縱軸表示,頻率=組距 頻率比 頻率分布直方圖中各小長(zhǎng)方形的面積之和為1,各小長(zhǎng)方形高的比也就是頻率比 眾數(shù) 最高小長(zhǎng)方形底邊中點(diǎn)的橫坐標(biāo) 中位數(shù) 平分頻率分布直方圖的面積且垂直于橫軸的直線與橫軸交點(diǎn)的橫坐標(biāo) 平均數(shù) 頻率分布直方圖中每個(gè)小長(zhǎng)方形的面積乘小長(zhǎng)方形底邊中點(diǎn)的橫坐標(biāo)之和 [小創(chuàng)新] 1.空氣質(zhì)量指數(shù)AQI是檢測(cè)空氣質(zhì)量的重要參數(shù),其數(shù)值越大說明空氣污染狀況越嚴(yán)重,空氣質(zhì)量越差.某地環(huán)保部門統(tǒng)計(jì)了該地區(qū)12月1日至12月24日連續(xù)24天的空氣質(zhì)量指數(shù)AQI,根據(jù)得到的數(shù)據(jù)繪制出如圖所示的折線圖.則下列說法錯(cuò)誤的是( ) A.該地區(qū)在12月2日空氣質(zhì)量最好 B.該地區(qū)在12月24日空氣質(zhì)量最差 C.該地區(qū)從12月7日到12月12日AQI持續(xù)增大 D.該地區(qū)的空氣質(zhì)量指數(shù)AQI與這段日期成負(fù)相關(guān) 解析:選D 12月2日空氣質(zhì)量指數(shù)最低,所以空氣質(zhì)量最好,A正確;12月24日空氣質(zhì)量指數(shù)最高,所以空氣質(zhì)量最差,B正確;12月7日到12月12日AQI在持續(xù)增大,所以C正確;在該地區(qū)統(tǒng)計(jì)這段時(shí)間內(nèi),空氣質(zhì)量指數(shù)AQI整體呈上升趨勢(shì),所以空氣質(zhì)量指數(shù)與這段日期成正相關(guān),D錯(cuò)誤. 2.為保障食品安全,某市質(zhì)量監(jiān)督局對(duì)某超市進(jìn)行食品安全檢查,如圖所示是某品牌食品中某元素含量數(shù)據(jù)的莖葉圖,已知該組數(shù)據(jù)的平均數(shù)為11.75,則+的最小值為( ) A.9 B. C.3 D. 解析:選C 根據(jù)莖葉圖中的數(shù)據(jù)得,該組數(shù)據(jù)的平均數(shù)=(a+11+13+20+b)=11.75,∴a+b=3,∴+=(a+b)=≥5+2=(5+4)=3.當(dāng)且僅當(dāng)a=2b,即a=2,b=1時(shí)取“=”.∴+的最小值為3.故選C. 3.《九章算術(shù)》第三章“衰分”中有如下問題:“今有甲持錢五百六十,乙持錢三百五十,丙持錢一百八十,凡三人俱出關(guān),關(guān)稅百錢,欲以錢數(shù)多少衰出之,問:各幾何?”其意為:今有甲帶了560錢,乙?guī)Я?50錢,丙帶了180錢,三人一起出關(guān),共需要交關(guān)稅100錢,依照錢的多少按比例出錢,則丙應(yīng)出________錢(所得結(jié)果四舍五入,保留整數(shù)). 解析:甲持560錢,乙持350錢,丙持180錢,甲、乙、丙三人一起出關(guān),關(guān)稅共100錢,要按照各人帶錢多少的比例進(jìn)行交稅,丙應(yīng)出100=16≈17(錢). 答案:17 增分考點(diǎn)廣度拓展 [分點(diǎn)研究] 題型一 回歸分析在實(shí)際問題中的應(yīng)用 [例1] 某商店為了更好地規(guī)劃某種商品的進(jìn)貨量,從某一年的銷售數(shù)據(jù)中,隨機(jī)抽取了8組數(shù)據(jù)作為研究對(duì)象,如下表所示(x為該商品的進(jìn)貨量,y為銷售天數(shù)): x/噸 2 3 4 5 6 8 9 11 y/天 1 2 3 3 4 5 6 8 (1)根據(jù)上表數(shù)據(jù)在如圖所示的網(wǎng)格中繪制散點(diǎn)圖; (2)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=x+; (3)根據(jù)(2)中的計(jì)算結(jié)果,若該商店準(zhǔn)備一次性進(jìn)貨該商品24噸,預(yù)測(cè)需要銷售的天數(shù). 參考公式和數(shù)據(jù):=,=-. =356,iyi=241. [解] (1)散點(diǎn)圖如圖所示: (2)依題意,得=(2+3+4+5+6+8+9+11)=6, =(1+2+3+3+4+5+6+8)=4, 又=356,iyi=241, 所以===, =4-6=-, 故線性回歸方程為=x-. (3)由(2)知,當(dāng)x=24時(shí),=24-≈17, 故若該商店一次性進(jìn)貨24噸,則預(yù)計(jì)需要銷售17天. [解題方略] 求回歸直線方程的方法 (1)若所求的回歸直線方程是在選擇題中,常利用回歸直線=x+必經(jīng)過樣本點(diǎn)的中心(,)快速選擇. (2)若所求的回歸直線方程是在解答題中,則求回歸直線方程的一般步驟為: 題型二 獨(dú)立性檢驗(yàn)在實(shí)際問題中的應(yīng)用 [例2] (2018全國(guó)卷Ⅲ)某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人.第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖: (1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由. (2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù)m,并將完成生產(chǎn)任務(wù)所需時(shí)間超過m和不超過m的工人數(shù)填入下面的列聯(lián)表: 超過m 不超過m 第一種生產(chǎn)方式 第二種生產(chǎn)方式 (3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異? 附:K2=, [解] (1)第二種生產(chǎn)方式的效率更高. 理由如下: (ⅰ)由莖葉圖可知:用第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需時(shí)間至少80 min,用第二種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需時(shí)間至多79 min.因此第二種生產(chǎn)方式的效率更高. (ⅱ)由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù)為85.5 min,用第二種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù)為73.5 min.因此第二種生產(chǎn)方式的效率更高. (ⅲ)由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需平均時(shí)間高于80 min;用第二種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需平均時(shí)間低于80 min.因此第二種生產(chǎn)方式的效率更高. (ⅳ)由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間分布在莖8上的最多,關(guān)于莖8大致呈對(duì)稱分布;用第二種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間分布在莖7上的最多,關(guān)于莖7大致呈對(duì)稱分布.又用兩種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間分布的區(qū)間相同,故可以認(rèn)為用第二種生產(chǎn)方式完成生產(chǎn)任務(wù)所需的時(shí)間比用第一種生產(chǎn)方式完成生產(chǎn)任務(wù)所需的時(shí)間更少.因此第二種生產(chǎn)方式的效率更高. (以上給出了4種理由,考生答出其中任意一種或其他合理理由均可得分) (2)由莖葉圖知m==80. 列聯(lián)表如下: 超過m 不超過m 第一種生產(chǎn)方式 15 5 第二種生產(chǎn)方式 5 15 (3)因?yàn)镵2==10>6.635,所以有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異. [解題方略] 獨(dú)立性檢驗(yàn)的一般步驟 (1)根據(jù)樣本數(shù)據(jù)制成22列聯(lián)表; (2)根據(jù)公式K2=(其中n=a+b+c+d)計(jì)算出K2的觀測(cè)值; (3)比較K2的觀測(cè)值與臨界值的大小,作出統(tǒng)計(jì)推斷. [多練強(qiáng)化] 1.(2018全國(guó)卷Ⅱ)下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額y(單位:億元)的折線圖. 為了預(yù)測(cè)該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了y與時(shí)間變量t的兩個(gè)線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時(shí)間變量t的值依次為1,2,…,17)建立模型①:=-30.4+13.5t;根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量t的值依次為1,2,…,7)建立模型②:=99+17.5t. (1)分別利用這兩個(gè)模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值; (2)你認(rèn)為用哪個(gè)模型得到的預(yù)測(cè)值更可靠?并說明理由. 解:(1)利用模型①,可得該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值為=-30.4+13.519=226.1(億元). 利用模型②,可得該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值為=99+17.59=256.5(億元). (2)利用模型②得到的預(yù)測(cè)值更可靠. 理由如下: (ⅰ)從折線圖可以看出,2000年至2016年的數(shù)據(jù)對(duì)應(yīng)的點(diǎn)沒有隨機(jī)散布在直線y=-30.4+13.5t上下,這說明利用2000年至2016年的數(shù)據(jù)建立的線性模型①不能很好地描述環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢(shì).2010年相對(duì)2009年的環(huán)境基礎(chǔ)設(shè)施投資額有明顯增加,2010年至2016年的數(shù)據(jù)對(duì)應(yīng)的點(diǎn)位于一條直線的附近,這說明從2010年開始環(huán)境基礎(chǔ)設(shè)施投資額的變化規(guī)律呈線性增長(zhǎng)趨勢(shì),利用2010年至2016年的數(shù)據(jù)建立的線性模型=99+17.5t可以較好地描述2010年以后的環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢(shì),因此利用模型②得到的預(yù)測(cè)值更可靠. (ⅱ)從計(jì)算結(jié)果看,相對(duì)于2016年的環(huán)境基礎(chǔ)設(shè)施投資額220億元,由模型①得到的預(yù)測(cè)值226.1億元的增幅明顯偏低,而利用模型②得到的預(yù)測(cè)值的增幅比較合理,說明利用模型②得到的預(yù)測(cè)值更可靠. (以上給出了2種理由,答出其中任意一種或其他合理理由均可得分) 2.(2019屆高三湖北五校聯(lián)考)通過隨機(jī)詢問100名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下22列聯(lián)表: 男 女 總計(jì) 愛好 40 不愛好 25 總計(jì) 45 100 (1)將題中的22列聯(lián)表補(bǔ)充完整; (2)能否有99%的把握認(rèn)為是否愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)?請(qǐng)說明理由. 附: P(K2≥k0) 0.050 0.010 0.001 k0 3.841 6.635 10.828 K2=. 解:(1)題中的22列聯(lián)表補(bǔ)充如下: 男 女 總計(jì) 愛好 40 20 60 不愛好 15 25 40 總計(jì) 55 45 100 (2)由(1)表中數(shù)據(jù)得K2=≈8.25>6.635,所以有99%的把握認(rèn)為是否愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān). 概率與統(tǒng)計(jì)的綜合問題 增分考點(diǎn)講練沖關(guān) [典例] (2018福州質(zhì)量檢測(cè))從某技術(shù)公司開發(fā)的某種產(chǎn)品中隨機(jī)抽取200件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值(記為Z),由測(cè)量結(jié)果得如下頻率分布直方圖: (1)公司規(guī)定:當(dāng)Z≥95時(shí),產(chǎn)品為正品;當(dāng)Z<95時(shí),產(chǎn)品為次品.公司每生產(chǎn)一件這種產(chǎn)品,若是正品,則盈利90元;若是次品,則虧損30元,記ξ為生產(chǎn)一件這種產(chǎn)品的利潤(rùn),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望; (2)由頻率分布直方圖可以認(rèn)為,Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差s2(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表). ①利用該正態(tài)分布,求P(87.8- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 通用版2019版高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 第二層級(jí) 重點(diǎn)增分 專題十三 統(tǒng)計(jì)、統(tǒng)計(jì)案例講義 理普通生,含解析 通用版 2019 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 第一 部分 第二 層級(jí) 重點(diǎn) 專題 十三
鏈接地址:http://m.kudomayuko.com/p-6115910.html