2019年高考數(shù)學(xué)大一輪復(fù)習(xí) 熱點(diǎn)聚焦與擴(kuò)展 專題49 離心率及其范圍問(wèn)題.doc
《2019年高考數(shù)學(xué)大一輪復(fù)習(xí) 熱點(diǎn)聚焦與擴(kuò)展 專題49 離心率及其范圍問(wèn)題.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學(xué)大一輪復(fù)習(xí) 熱點(diǎn)聚焦與擴(kuò)展 專題49 離心率及其范圍問(wèn)題.doc(17頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
專題49 離心率及其范圍問(wèn)題 【熱點(diǎn)聚焦與擴(kuò)展】 縱觀近幾年的高考試題,高考對(duì)圓錐曲線 離心率問(wèn)題是熱點(diǎn)之一.從命題的類型看,有小題,也有大題.一把說(shuō)來(lái),小題大難度基本處于中低檔,而大題中則往往較為簡(jiǎn)單.小題中單純考查橢圓、雙曲線的離心率的確定較為簡(jiǎn)單,而將三種曲線結(jié)合考查,難度則大些.本文在分析研究近幾年高考題及各地模擬題的基礎(chǔ)上,重點(diǎn)說(shuō)明離心率及其范圍問(wèn)題的解法與技巧. 1、求離心率的方法:求橢圓和雙曲線的離心率主要圍繞尋找參數(shù)的比例關(guān)系(只需找出其中兩個(gè)參數(shù)的關(guān)系即可),方法通常有兩個(gè)方向: (1)利用幾何性質(zhì):如果題目中存在焦點(diǎn)三角形(曲線上的點(diǎn)與兩焦點(diǎn)連線組成的三角形),那么可考慮尋求焦點(diǎn)三角形三邊的比例關(guān)系,進(jìn)而兩條焦半徑與有關(guān),另一條邊為焦距.從而可求解 (2)利用坐標(biāo)運(yùn)算:如果題目中的條件難以發(fā)掘幾何關(guān)系,那么可考慮將點(diǎn)的坐標(biāo)用進(jìn)行表示,再利用條件列出等式求解 2、離心率的范圍問(wèn)題:在尋找不等關(guān)系時(shí)通常可從以下幾個(gè)方面考慮: (1)題目中某點(diǎn)的橫坐標(biāo)(或縱坐標(biāo))是否有范圍要求:例如橢圓與雙曲線對(duì)橫坐標(biāo)的范圍有要求.如果問(wèn)題圍繞在“曲線上存在一點(diǎn)”,則可考慮該點(diǎn)坐標(biāo)用表示,且點(diǎn)坐標(biāo)的范圍就是求離心率范圍的突破口 (2)若題目中有一個(gè)核心變量,則可以考慮離心率表示為某個(gè)變量的函數(shù),從而求該函數(shù)的值域即可 (3)通過(guò)一些不等關(guān)系得到關(guān)于的不等式,進(jìn)而解出離心率 注:在求解離心率范圍時(shí)要注意圓錐曲線中對(duì)離心率范圍的初始要求:橢圓:,雙曲線: 【經(jīng)典例題】 例1.【2017課標(biāo)3,理10】已知橢圓C:,(a>b>0)的左、右頂點(diǎn)分別為A1,A2,且以線段A1A2為直徑的圓與直線相切,則C的離心率為( ) A. B. C. D. 【答案】A 【解析】 點(diǎn)睛:橢圓的離心率是橢圓最重要的幾何性質(zhì),求橢圓的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法: ①求出a,c,代入公式e= ;x/k**w ②只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,結(jié)合b2=a2-c2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍). 例2.【2017課標(biāo)II,理9】若雙曲線(,)的一條漸近線被圓所截得的弦長(zhǎng)為2,則的離心率為( ) A.2 B. C. D. 【答案】A 【解析】 例3.【2018屆山東省濟(jì)南省二模】設(shè)橢圓的左、右焦點(diǎn)分別為,點(diǎn).已知?jiǎng)狱c(diǎn)在橢圓上,且點(diǎn)不共線,若的周長(zhǎng)的最小值為,則橢圓的離心率為( ) A. B. C. D. 【答案】A ∴ 故選:A 例4.【2018屆云南省昆明第一中學(xué)第八次月考】已知雙曲線的左、右焦點(diǎn)分別為,點(diǎn)是雙曲線底面右頂點(diǎn),點(diǎn)是雙曲線上一點(diǎn),平分,且,則雙曲線的離心率為( ) A. B. C. D. 【答案】D 例5.【2017課標(biāo)1,理】已知雙曲線C:(a>0,b>0)的右頂點(diǎn)為A,以A為圓心,b為半徑作圓A,圓A與雙曲線C的一條漸近線交于M、N兩點(diǎn).若∠MAN=60,則C的離心率為_(kāi)_______. 【答案】 【解析】試題分析: 例6.【2018屆重慶市江津中學(xué)校4月月考】如圖,雙曲線的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,為雙曲線的頂點(diǎn),為雙曲線虛軸的端點(diǎn),為右焦點(diǎn),延長(zhǎng)與交于點(diǎn),若是銳角,則該雙曲線的離心率的取值范圍是( ) A. B. C. D. 【答案】D 【解析】試題分析:根據(jù)∠B1PB2為與夾角,并分別表示出與,由∠B1PB2為鈍角,.<0,得ac﹣b2<0,利用橢圓的性質(zhì),可得到e2-e﹣1>0,即可解得離心率的取值范圍. 詳解: 如圖所示,∠B1PB2為與的夾角; 設(shè)橢圓的長(zhǎng)半軸、短半軸、半焦距分別為a,b,c, =(a,b),=(c,﹣b), ∴1<e<, 故選:C. 點(diǎn)睛:本題主要考查雙曲線的定義及幾何性質(zhì),以雙曲線為載體,通過(guò)利用導(dǎo)數(shù)研究的單調(diào)性,考查邏輯思維能力、運(yùn)算能力以及數(shù)形結(jié)合思想.雙曲線的離心率問(wèn)題,主要是有兩類試題:一類是求解離心率的值,一類是求解離心率的范圍.基本的解題思路是建立橢圓和雙曲線中的關(guān)系式,求值問(wèn)題就是建立關(guān)于的等式,求取值范圍問(wèn)題就是建立關(guān)于的不等式. 例7.已知橢圓和雙曲線有共同焦點(diǎn),是它們的一個(gè)交點(diǎn),且,記橢圓和雙曲線的離心率分別為,則的最大值是( ) A. B. C. 2 D. 3 【答案】A 【解析】 化簡(jiǎn)得: 該式可變成: , 故選 點(diǎn)睛:本題綜合性較強(qiáng),難度較大,運(yùn)用基本知識(shí)點(diǎn)結(jié)合本題橢圓和雙曲線的定義給出與、的數(shù)量關(guān)系,然后再利用余弦定理求出與的數(shù)量關(guān)系,最后利用基本不等式求得范圍. 例8.【2018屆福建省漳州市5月測(cè)試】已知直線與橢圓交于、兩點(diǎn),與圓交于、兩點(diǎn).若存在,使得,則橢圓的離心率的取值范圍是 A. B. C. D. 【答案】C 【解析】分析:先根據(jù)直線的方程判定該直線過(guò)定點(diǎn),且該點(diǎn)是圓的圓心,再利用判定點(diǎn)是線段的中點(diǎn),再利用點(diǎn)差法進(jìn)行求解. 詳解:將化為, 即直線恒過(guò)定點(diǎn),且該點(diǎn)為圓的圓心, 由,得是的中點(diǎn), 點(diǎn)睛:1.判定直線過(guò)定點(diǎn)的方法: 法一:化為點(diǎn)斜式方程; 法二:分別令,得,解得; 法三:化為,則; 2.在處理圓錐曲線的中點(diǎn)弦問(wèn)題時(shí),利用點(diǎn)差法,可減少運(yùn)算量,提高解題速度. 例9.【2018屆河南省名校壓軸第二次考試】已知橢圓的右焦點(diǎn)為,短軸的一個(gè)端點(diǎn)為,直線交橢圓于兩點(diǎn),若,點(diǎn)到直線的距離不小于,則橢圓的離心率的取值范圍是( ) A. B. C. D. 【答案】A 解得,所以, 所以橢圓的離心率的取值范圍是,故選A. 例10.【2018屆河南省名校壓軸第二次考試】過(guò)雙曲線的右焦點(diǎn)且垂直于軸的直線與雙曲線交于兩點(diǎn),為虛軸的一個(gè)端點(diǎn),且為鈍角三角形,則此雙曲線離心率的取值范圍為_(kāi)_________. 【答案】 【解析】分析:設(shè)出雙曲線的左焦點(diǎn),令x=﹣c,代入雙曲線的方程,解得A,B的坐標(biāo),討論∠DAB為鈍角,可得<0,或∠ADB為鈍角,可得<0,運(yùn)用向量數(shù)量積的坐標(biāo)表示,再由離心率公式和范圍,即可得到所求范圍. 詳解:設(shè)雙曲線的左焦點(diǎn)F1(﹣c,0), 令x=﹣c,可得y==, 可得A(﹣c,),B(﹣c,﹣), 又設(shè)D(0,b),可得=(c,b﹣), =(0,﹣),=(﹣c,﹣b﹣), 由△ABD為鈍角三角形,可能∠DAB為鈍角,可得<0, 化為c4﹣4a2c2+2a4>0, 由e=,可得e4﹣4e2+2>0, 又e>1,可得e>. 綜上可得,e的范圍為(1,)∪(.+∞). 故答案為: 點(diǎn)睛:(1) 本題考查雙曲線的離心率的范圍及向量數(shù)量積的坐標(biāo)表示. 意在考查學(xué)生對(duì)這些知識(shí)的掌握能力和分析推理運(yùn)算能力.(2)本題的關(guān)鍵是轉(zhuǎn)化為鈍角三角形,這里是利用數(shù)量積<0轉(zhuǎn)化的,比較簡(jiǎn)潔高效. 【精選精練】 1.已知橢圓的半焦距為,左焦點(diǎn)為,右頂點(diǎn)為,拋物線與橢圓交于兩點(diǎn),若四邊形是菱形,則橢圓的離心率是( ) A. B. C. D. 【答案】C 詳解: 由題意得,橢圓,為半焦距), 的左焦點(diǎn)為,右頂點(diǎn)為,則, 拋物線于橢圓交于兩點(diǎn), 兩點(diǎn)關(guān)于軸對(duì)稱,可設(shè), 四邊形是菱形,,則, 將代入拋物線方程得,, ,則不妨設(shè),再代入橢圓方程, 化簡(jiǎn)得,由,即有, 解得或(舍去),故選C. 2.【2018屆湖南師范大學(xué)附屬中學(xué)月考(六)】設(shè)橢圓的右焦點(diǎn)為,橢圓上的兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,且滿足,則橢圓的離心率的取值范圍是( ) A. B. C. D. 【答案】A 整理得,令,得, 又由,得,所以, 所以離心率的取值范圍是,故選A. 3.已知雙曲線的右焦點(diǎn)為,右頂點(diǎn)為,過(guò)作的垂線與雙曲線交于、兩點(diǎn),過(guò)、分別作、的垂線,兩垂線交于點(diǎn),若到直線的距離小于, 則雙曲線的離心率的取值范圍是( ) A. B. C. D. 【答案】A 為,到直線的距離小于,,,則,即,即,則雙曲線的離心率的取值范圍是,故選A. 4.【2018屆河南省鄭州市第三次預(yù)測(cè)】已知雙曲線的右焦點(diǎn)為為坐標(biāo)原點(diǎn),若存在直線過(guò)點(diǎn)交雙曲線的右支于兩點(diǎn),使,則雙曲線離心率的取值范圍是__________. 【答案】 【解析】分析:先求出當(dāng)直線與x軸垂直時(shí)的離心率,再求出當(dāng)直線與漸近線平行時(shí)這一極端情況下的離心率,由此可得所求的范圍. 若直線平行于漸近線時(shí),直線的斜率為,直線方程為, 代入雙曲線方程可得點(diǎn)A的坐標(biāo)為, ∴的斜率為, 又此時(shí)有, ∴, 整理得,解得. 但此時(shí)直線與雙曲線的右支只有一個(gè)交點(diǎn),不合題意. ∴雙曲線離心率的取值范圍是. 5.【2018屆山東省煙臺(tái)市高考練習(xí)(二)】已知點(diǎn)是拋物線:與橢圓:的公共焦點(diǎn),是橢圓的另一焦點(diǎn),是拋物線上的動(dòng)點(diǎn),當(dāng)取得最小值時(shí),點(diǎn)恰好在橢圓上,則橢圓的離心率為_(kāi)______. 【答案】 【解析】分析:由題意可知與拋物線相切時(shí),取得最小值,求出此時(shí)點(diǎn)的坐標(biāo),代入橢圓方程求出的值,即可求解其離心率. 詳解:拋物線的焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為, 因?yàn)樵跈E圓上,且為橢圓的焦點(diǎn), 所以,解得或(舍去), 所以,所以離心率為. 6.已知, 是橢圓和雙曲線的公共焦點(diǎn), 是它們的一個(gè)公共點(diǎn),且為直角,橢圓的離心率為,雙曲線的離心率,則的值為_(kāi)________. 【答案】2. 故答案為:2. 7.【2018屆江西省上饒市三模】已知兩定點(diǎn)和,動(dòng)點(diǎn)在直線:上移動(dòng),橢圓以,為焦點(diǎn)且經(jīng)過(guò)點(diǎn),則橢圓的離心率的最大值為_(kāi)_________. 【答案】 【解析】分析:作出直線y=x+2,過(guò)A作直線y=x+2的對(duì)稱點(diǎn)C,2a=|PA|+|PB|≥|CD|+|DB|=|BC|,即可得到a的最大值,由于c=1,由離心率公式即可得到. 詳解:由題意知c=1,離心率e=,橢圓C以A,B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)P,則c=1, 對(duì)應(yīng)的離心率e有最大值. 故答案為: 點(diǎn)睛:(1)本題主要考查橢圓的幾何性質(zhì)和點(diǎn)線對(duì)稱問(wèn)題,意在考查學(xué)生對(duì)這些基礎(chǔ)知識(shí)的掌握能力和數(shù)形結(jié)合的分析轉(zhuǎn)化能力. (2)解答本題的關(guān)鍵是求a的最小值.本題求|PA|+|PB|的最小值,利用了對(duì)稱的思想.求點(diǎn)P關(guān)于直線l的對(duì)稱點(diǎn)時(shí),直線l實(shí)際上是線段垂直平分線,根據(jù)垂直平分得到一個(gè)方程組,即可求出點(diǎn)的坐標(biāo). 8.【2018屆福建省三明市5月測(cè)試】已知雙曲線的左、右焦點(diǎn)分別為,是右支上的一點(diǎn),是的延長(zhǎng)線上一點(diǎn),且,若,則的離心率的取值范圍是______________. 【答案】 又 即,得: ∴方程有大于的根 ∴ 得,又 ∴ 故答案為: 9.如圖所示, 橢圓中心在坐標(biāo)原點(diǎn),為左焦點(diǎn),分別為橢圓的右頂點(diǎn)和上頂點(diǎn),當(dāng)時(shí),其離心率為,此類橢圓被稱為“黃金橢圓”,類比“黃金橢圓”,可推算出“黃金雙曲線”的離心率等于___________. 【答案】. 則, , ∵, ∴, ∴, ∴, 解得或(舍去), ∴黃金雙曲線”的離心率e等于. 點(diǎn)睛:本題考查類比推理和雙曲線離心率的求法,解題的關(guān)鍵是得到“黃金雙曲線”的特征,得到相關(guān)點(diǎn)的坐標(biāo)后將這一特征轉(zhuǎn)化為的關(guān)系式,構(gòu)造出關(guān)于離心率的方程,解方程可得所求,解題時(shí)要注意雙曲線的離心率大于1這一條件. 10.【2018屆5月第三次全國(guó)大聯(lián)考】已知雙曲線的左、右焦點(diǎn)分別為,,過(guò)點(diǎn)作軸的垂線,在第一象限與雙曲線交于點(diǎn).設(shè)直線的斜率為,若,則雙曲線的離心率的取值范圍為_(kāi)_____________. 【答案】 11.【百校聯(lián)盟TOP202018屆高三四月聯(lián)考】已知是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),若橢圓上存在點(diǎn),使得直線斜率的絕對(duì)值之和為1,則橢圓的離心率的取值范圍是______. 【答案】 【解析】分析:由是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),易知斜率之積為定值,結(jié)合均值不等式即可建立關(guān)于的不等式,從而得到橢圓的離心率的取值范圍. 詳解:不妨設(shè)橢圓C的方程為,,則, 所以,,兩式相減得,所以,所以直線斜率的絕對(duì)值之和為,由題意得,,所以=4,即,所以,所以. 故答案為:. 12.【2018屆云南省曲靖市第一中學(xué)4月監(jiān)測(cè)卷(七)】已知橢圓的右焦點(diǎn)為,短軸的一個(gè)端點(diǎn)為,直線交橢圓于兩點(diǎn),若,點(diǎn)到直線的距離不小于,則橢圓離心率的取值范圍是__________. 【答案】 則, 即, 設(shè),因?yàn)辄c(diǎn)到直線的距離不小于, 所以,即, 即,即, 即橢圓離心率的取值范圍是. 點(diǎn)睛:(1)在處理涉及橢圓或雙曲線的點(diǎn)和焦點(diǎn)問(wèn)題時(shí),往往利用橢圓或雙曲線的定義進(jìn)行轉(zhuǎn)化,可起到事半功倍的效果; (2)在求橢圓的離心率時(shí),往往用到如下轉(zhuǎn)化: .- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年高考數(shù)學(xué)大一輪復(fù)習(xí) 熱點(diǎn)聚焦與擴(kuò)展 專題49 離心率及其范圍問(wèn)題 2019 年高 數(shù)學(xué) 一輪 復(fù)習(xí) 熱點(diǎn) 聚焦 擴(kuò)展 專題 49 離心 及其 范圍 問(wèn)題
鏈接地址:http://m.kudomayuko.com/p-6148939.html