2019-2020年人教A版高中數(shù)學(xué)選修1-1 3-4 生活中的優(yōu)化問題舉例 教案.doc
《2019-2020年人教A版高中數(shù)學(xué)選修1-1 3-4 生活中的優(yōu)化問題舉例 教案.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年人教A版高中數(shù)學(xué)選修1-1 3-4 生活中的優(yōu)化問題舉例 教案.doc(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年人教A版高中數(shù)學(xué)選修1-1 3-4 生活中的優(yōu)化問題舉例 教案 一、教學(xué)目標(biāo) 1.知識(shí)和技能目標(biāo) (1)使利潤(rùn)最大、用料最省、效率最高等優(yōu)化問題,體會(huì)導(dǎo)數(shù)在解決實(shí)際問題中的作用; (2)提高將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力. 2.過程和方法目標(biāo) (1)培養(yǎng)學(xué)生主動(dòng)發(fā)現(xiàn)問題、分析問題、解決問題的能力; 3.情感態(tài)度和價(jià)值觀目標(biāo) (1)進(jìn)一步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)。 二、教學(xué)重點(diǎn).難點(diǎn) 教學(xué)重點(diǎn):利用導(dǎo)數(shù)求函數(shù)最值的方法.用導(dǎo)數(shù)方法求函數(shù)最值的方法步驟 教學(xué)難點(diǎn):對(duì)最值的理解及與極值概念的區(qū)別與聯(lián)系.求一些實(shí)際問題的最大值與最小值 三、學(xué)情分析 生活中經(jīng)常遇到求利潤(rùn)最大、用料最省、效率最高等問題,這些問題通常稱為優(yōu)化問題.通過前面的學(xué)習(xí),我們知道,導(dǎo)數(shù)是求函數(shù)最大(?。┲档挠辛ぞ撸@一節(jié),我們利用導(dǎo)數(shù),解決一些生活中的優(yōu)化問題. 四、教學(xué)方法 師生互動(dòng)探究式教學(xué) 五、教學(xué)過程 導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用主要是解決有關(guān)函數(shù)最大值、最小值的實(shí)際問題,主要有以下幾個(gè)方面: 1、與幾何有關(guān)的最值問題; 2、與物理學(xué)有關(guān)的最值問題; 3、與利潤(rùn)及其成本有關(guān)的最值問題; 4、效率最值問題。 解決優(yōu)化問題的方法:首先是需要分析問題中各個(gè)變量之間的關(guān)系,建立適當(dāng)?shù)暮瘮?shù)關(guān)系,并確定函數(shù)的定義域,通過創(chuàng)造在閉區(qū)間內(nèi)求函數(shù)取值的情境,即核心問題是建立適當(dāng)?shù)暮瘮?shù)關(guān)系。再通過研究相應(yīng)函數(shù)的性質(zhì),提出優(yōu)化方案,使問題得以解決,在這個(gè)過程中,導(dǎo)數(shù)是一個(gè)有力的工具. 利用導(dǎo)數(shù)解決優(yōu)化問題的基本思路: 建立數(shù)學(xué)模型 解決數(shù)學(xué)模型 作答 用函數(shù)表示的數(shù)學(xué)問題 優(yōu)化問題 用導(dǎo)數(shù)解決數(shù)學(xué)問題 優(yōu)化問題的答案 知識(shí)應(yīng)用,深化理解 例1.海報(bào)版面尺寸的設(shè)計(jì) 學(xué)?;虬嗉?jí)舉行活動(dòng),通常需要張貼海報(bào)進(jìn)行宣傳?,F(xiàn)讓你設(shè)計(jì)一張如圖1.4-1所示的豎向張貼的海報(bào),要求版心面積為128dm2,上、下兩邊各空2dm,左、右兩邊各空1dm。如何設(shè)計(jì)海報(bào)的尺寸,才能使四周空心面積最??? 解:設(shè)版心的高為xdm,則版心的寬為dm,此時(shí)四周空白面積為 。 求導(dǎo)數(shù),得。令,解得舍去)。 于是寬為。 當(dāng)時(shí),<0;當(dāng)時(shí),>0. 因此,是函數(shù)的極小值,也是最小值點(diǎn)。所以,當(dāng)版心高為16dm,寬為8dm時(shí),能使四周空白面積最小。 答:當(dāng)版心高為16dm,寬為8dm時(shí),海報(bào)四周空白面積最小。 例2.飲料瓶大小對(duì)飲料公司利潤(rùn)的影響 (1)你是否注意過,市場(chǎng)上等量的小包裝的物品一般比大包裝的要貴些? (2)是不是飲料瓶越大,飲料公司的利潤(rùn)越大? 【背景知識(shí)】:某制造商制造并出售球型瓶裝的某種飲料.瓶子的制造成本是 分,其中 是瓶子的半徑,單位是厘米。已知每出售1 mL的飲料,制造商可獲利 0.2 分,且制造商能制作的瓶子的最大半徑為 6cm 問題:(1)瓶子的半徑多大時(shí),能使每瓶飲料的利潤(rùn)最大? (2)瓶子的半徑多大時(shí),每瓶的利潤(rùn)最??? 解:由于瓶子的半徑為,所以每瓶飲料的利潤(rùn)是 令 解得 (舍去) 當(dāng)時(shí),;當(dāng)時(shí),. 當(dāng)半徑時(shí),它表示單調(diào)遞增,即半徑越大,利潤(rùn)越高; 當(dāng)半徑時(shí), 它表示單調(diào)遞減,即半徑越大,利潤(rùn)越低. (1)半徑為cm 時(shí),利潤(rùn)最小,這時(shí),表示此種瓶?jī)?nèi)飲料的利潤(rùn)還不夠瓶子的成本,此時(shí)利潤(rùn)是負(fù)值. (2)半徑為cm時(shí),利潤(rùn)最大. 換一個(gè)角度:如果我們不用導(dǎo)數(shù)工具,直接從函數(shù)的圖像上觀察,會(huì)有什么發(fā)現(xiàn)? 有圖像知:當(dāng)時(shí),,即瓶子的半徑為3cm時(shí),飲料的利潤(rùn)與飲料瓶的成本恰好相等;當(dāng)時(shí),利潤(rùn)才為正值. 當(dāng)時(shí),,為減函數(shù),其實(shí)際意義為:瓶子的半徑小于2cm時(shí),瓶子的半徑越大,利潤(rùn)越小,半徑為cm 時(shí),利潤(rùn)最?。? 例3.磁盤的最大存儲(chǔ)量問題 計(jì)算機(jī)把數(shù)據(jù)存儲(chǔ)在磁盤上。磁盤是帶有磁性介質(zhì)的圓盤,并有操作系統(tǒng)將其格式化成磁道和扇區(qū)。磁道是指不同半徑所構(gòu)成的同心軌道,扇區(qū)是指被同心角分割所成的扇形區(qū)域。磁道上的定長(zhǎng)弧段可作為基本存儲(chǔ)單元,根據(jù)其磁化與否可分別記錄數(shù)據(jù)0或1,這個(gè)基本單元通常被稱為比特(bit)。 為了保障磁盤的分辨率,磁道之間的寬度必需大于,每比特所占用的磁道長(zhǎng)度不得小于。為了數(shù)據(jù)檢索便利,磁盤格式化時(shí)要求所有磁道要具有相同的比特?cái)?shù)。 問題:現(xiàn)有一張半徑為的磁盤,它的存儲(chǔ)區(qū)是半徑介于與之間的環(huán)形區(qū)域. (1)是不是越小,磁盤的存儲(chǔ)量越大? (2)為多少時(shí),磁盤具有最大存儲(chǔ)量(最外面的磁道不存儲(chǔ)任何信息)? 解:由題意知:存儲(chǔ)量=磁道數(shù)每磁道的比特?cái)?shù)。 設(shè)存儲(chǔ)區(qū)的半徑介于與R之間,由于磁道之間的寬度必需大于,且最外面的磁道不存儲(chǔ)任何信息,故磁道數(shù)最多可達(dá)。由于每條磁道上的比特?cái)?shù)相同,為獲得最大存儲(chǔ)量,最內(nèi)一條磁道必須裝滿,即每條磁道上的比特?cái)?shù)可達(dá)。所以,磁盤總存儲(chǔ)量 (1)它是一個(gè)關(guān)于的二次函數(shù),從函數(shù)解析式上可以判斷,不是越小,磁盤的存儲(chǔ)量越大. (2)為求的最大值,計(jì)算. 令,解得 當(dāng)時(shí),;當(dāng)時(shí),. 因此時(shí),磁盤具有最大存儲(chǔ)量。此時(shí)最大存儲(chǔ)量為 例4.圓柱形金屬飲料罐的容積一定時(shí),它的高與底與半徑應(yīng)怎樣選取,才能使所用的材料最??? 解:設(shè)圓柱的高為h,底半徑為R,則表面積 S=2πRh+2πR2 由V=πR2h,得,則S(R)= 2πR+ 2πR2=+2πR2 令 +4πR=0 解得,R=,從而h====2 即h=2R 因?yàn)镾(R)只有一個(gè)極值,所以它是最小值 答:當(dāng)罐的高與底直徑相等時(shí),所用材料最省 七、當(dāng)堂檢測(cè) 1.某出版社出版一讀物,一頁上所印文字占去150cm2,上、下要留1.5cm空白,左、右要留1cm空白,出版商為節(jié)約紙張,應(yīng)選用怎樣尺寸的頁面? 分析:設(shè)所印文字區(qū)域的左右長(zhǎng)為x cm,確定紙張的長(zhǎng)與寬,表示出面積,利用導(dǎo)數(shù),確定函數(shù)的單調(diào)性,即可求得結(jié)論. 設(shè)所印文字區(qū)域的左右長(zhǎng)為x cm,則上下長(zhǎng)為 cm, 所以紙張的左右長(zhǎng)為(x+2)cm,上下長(zhǎng)為()cm, 所以紙張的面積S=(x+2)()=3x+ +156. 所以S′=,令S′=0解得x=10. 當(dāng)x>10時(shí),S單調(diào)遞增;當(dāng)0<x<10時(shí),S單調(diào)遞減. 所以當(dāng)x=10時(shí),Smin=216(cm2),此時(shí)紙張的左右長(zhǎng)為12 cm,上下長(zhǎng)為18 cm. 故當(dāng)紙張的邊長(zhǎng)分別為12 cm,18 cm時(shí)最節(jié)約. 2.一書店預(yù)計(jì)一年內(nèi)要銷售某種書15萬冊(cè),欲分幾次訂貨,如果每次訂貨要付手續(xù)費(fèi)30元,每千冊(cè)書存放一年要耗庫費(fèi)40元,并假設(shè)該書均勻投放市場(chǎng),問此書店分幾次進(jìn)貨、每次進(jìn)多少冊(cè),可使所付的手續(xù)費(fèi)與庫存費(fèi)之和最少? 【解】假設(shè)每次進(jìn)書x千冊(cè),手續(xù)費(fèi)與庫存費(fèi)之和為y元, 由于該書均勻投放市場(chǎng),則平均庫存量為批量之半,即,故有 y =30+40,y′=-+20, 令y′=0,得x =15,且y″=,f″(15)>0, 所以當(dāng)x =15時(shí),y取得極小值,且極小值唯一, 故 當(dāng)x =15時(shí),y取得最小值,此時(shí)進(jìn)貨次數(shù)為=10(次). 即該書店分10次進(jìn)貨,每次進(jìn)15000冊(cè)書,所付手續(xù)費(fèi)與庫存費(fèi)之和最少. 設(shè)計(jì)意圖:目的是讓學(xué)生學(xué)會(huì)用數(shù)學(xué)的眼光去看待物理模型,建立各學(xué)科之間的聯(lián)系,更深刻地把握事物變化的規(guī)律。 六、課堂小結(jié) 1.知識(shí)建構(gòu) 2.能力提高 3.課堂體驗(yàn) 七、課時(shí)練與測(cè) 八、教學(xué)反思- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年人教A版高中數(shù)學(xué)選修1-1 3-4 生活中的優(yōu)化問題舉例 教案 2019 2020 年人教 高中數(shù)學(xué) 選修 生活 中的 優(yōu)化 問題 舉例
鏈接地址:http://m.kudomayuko.com/p-6183210.html