《2018-2019高考物理二輪復(fù)習(xí) 專題限時訓(xùn)練7 動量守恒定律.doc》由會員分享,可在線閱讀,更多相關(guān)《2018-2019高考物理二輪復(fù)習(xí) 專題限時訓(xùn)練7 動量守恒定律.doc(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
專題限時訓(xùn)練7 動量守恒定律
時間:45分鐘
一、單項(xiàng)選擇題
1.一個質(zhì)量為3 kg的物體所受的合外力隨時間變化的情況如圖所示,那么該物體在6 s內(nèi)速度的改變量是( D )
A.7 m/s B.6.7 m/s
C.6 m/s D.5 m/s
解析:Ft圖線與時間軸圍成的面積在數(shù)值上代表了合外力的沖量,故合外力沖量為I=(34+24-12) Ns=15 Ns.根據(jù)動量定理有I=mΔv,Δv== m/s=5 m/s.
2.臺球以速度v0與球桌邊框成α角撞擊O點(diǎn),反彈后速度為v1,方向與球桌邊框夾角仍為α,如圖所示.如果v1
m,物體A對地向左的最大位移是
B.若Mm,A所受的摩擦力f=μmg,對A,根據(jù)動能定理得:-μmgxA=0-mv,則得物體A對地向左的最大位移xA=,故A錯誤;若M1),液體阻力的大小與速度的大小成正比,重力加速度大小為g,下面給出時間t的四個表達(dá)式中只有一個是合理的,你可能不會求解t,但是你可以通過一定的物理分析,對下列表達(dá)式的合理性做出判斷,根據(jù)你的判斷,你認(rèn)為t的合理表達(dá)式應(yīng)為( C )
A.t= B.t=
C.t= D.t=
解析:若沒有阻力,則v1=v2,但從等式看出時間為零,與實(shí)際情況矛盾,故B錯誤;等式兩邊的單位應(yīng)該是相同的,D項(xiàng)表達(dá)式右邊單位是m,左邊單位是s,等式顯然不成立,故錯誤;若k略大于1,即浮力略大于重力,塑料小球返回時加速度很小,時間很長,但A選項(xiàng)求解的時間不是很長,C選項(xiàng)求解的時間很長,故A錯誤,C正確.
二、多項(xiàng)選擇題
7.如圖所示,質(zhì)量為m的小車靜止在光滑的水平地面上,車上有半圓形光滑軌道,現(xiàn)將質(zhì)量也為m的小球在軌道左側(cè)邊緣由靜止釋放,則( BD )
A.在下滑過程中小球機(jī)械能守恒
B.小球可以到達(dá)右側(cè)軌道的最高點(diǎn)
C.小球在右側(cè)軌道上滑時,小車也向右運(yùn)動
D.小球在軌道最低點(diǎn)時,小車與小球的速度大小相等,方向相反
解析:小球下滑的過程中,半圓形軌道對小球的支持力對小球做負(fù)功,小球的機(jī)械能不守恒,但由小球和小車組成的系統(tǒng)機(jī)械能守恒,A錯誤;小球和小車組成的系統(tǒng)機(jī)械能守恒且水平方向動量守恒,小球可以到達(dá)右側(cè)軌道的最高點(diǎn),B正確;小球在右側(cè)軌道上滑時,小車仍向左運(yùn)動,但做減速運(yùn)動,C錯誤;由小球和小車水平方向動量守恒,得0=mv球-mv車,則v球=v車,D正確.
8.如圖所示,小車放在光滑水平面上,A端固定一個輕彈簧,B端粘有油泥,小車總質(zhì)量為M,質(zhì)量為m的木塊C放在小車上,用細(xì)繩連接于小車的A端并使彈簧壓縮,開始時小車和C都靜止,當(dāng)突然燒斷細(xì)繩時,C被釋放,隨后離開彈簧向B端沖去,并跟B端油泥粘在一起,忽略一切摩擦,以下說法正確的是( BC )
A.彈簧伸長過程中C向右運(yùn)動,同時小車也向右運(yùn)動
B.C與B端碰前,C與小車的速率之比為Mm
C.C與油泥粘在一起后,小車立即停止運(yùn)動
D.C與油泥粘在一起后,小車?yán)^續(xù)向右運(yùn)動
解析:小車與木塊C組成的系統(tǒng)在水平方向上動量守恒,C向右運(yùn)動時,小車應(yīng)向左運(yùn)動,故A錯誤;設(shè)碰前C的速率為v1,小車的速率為v2,則0=mv1-Mv2,得=,故B正確;設(shè)C與油泥粘在一起后,小車、C的共同速度為v共,則0=(M+m)v共,得v共=0,故C正確,D錯誤.
9.如圖所示,傾角為θ的固定斜面足夠長,一質(zhì)量為m上表面光滑的足夠長的長方形木板A正以速度v0沿斜面勻速下滑,某時刻將質(zhì)量為2m的小滑塊B無初速度地放在木板A上,則滑塊與木板都在滑動的過程中( CD )
A.木板A的加速度大小為3gsinθ
B.木板A的加速度大小為零
C.A、B組成的系統(tǒng)所受合外力的沖量一定為零
D.木板A的動量為mv0時,小滑塊B的動量為mv0
解析:只有木板A時,木板A勻速下滑,則說明木板A受到的重力的分力與摩擦力等大反向,即mgsinθ=μmgcosθ,若加上小滑塊B后,A對斜面的壓力增大,則摩擦力變?yōu)棣?mgcosθ,而沿斜面方向上的力不變,故合外力為:3μmgcosθ-mgsinθ=2mgsinθ,故加速度大小a=2gsinθ,選項(xiàng)A、B錯誤;由分析可知,整體在沿斜面方向受力平衡,故整體動量守恒,故合外力的沖量一定為零,選項(xiàng)C正確;因動量守恒,故總動量保持不變,由動量守恒定律可知:mv1+2mv2=mv0,故當(dāng)A動量為mv0時,B的動量為mv0,選項(xiàng)D正確.
10.在光滑的水平桌面上有等大的質(zhì)量分別為M=0.6 kg,m=0.2 kg的兩個小球,中間夾著一個被壓縮的具有Ep=10.8 J的彈性勢能的輕彈簧(彈簧與兩球不相連),原來處于靜止?fàn)顟B(tài).現(xiàn)突然釋放彈簧,球m脫離彈簧后滑向與水平面相切、半徑為R=0.425 m的豎直放置的光滑半圓形軌道,如圖所示.g取10 m/s2,則下列說法正確的是( AD )
A.球m從軌道底端A運(yùn)動到頂端B的過程中所受合外力沖量大小為3.4 Ns
B.M離開輕彈簧時獲得的速度為9 m/s
C.若半圓軌道半徑可調(diào),則球m從B點(diǎn)飛出后落在水平桌面上的水平距離隨軌道半徑的增大而減小
D.彈簧彈開過程,彈力對m的沖量大小為1.8 Ns
解析:釋放彈簧過程中系統(tǒng)動量守恒、機(jī)械能守恒,以向右為正方向,由動量守恒得:mv1-Mv2=0,由機(jī)械能守恒得:mv+Mv=Ep,代入數(shù)據(jù)解得:v1=9 m/s,v2=3 m/s;m從A到B過程中,由機(jī)械能守恒定律得:mv=mv′+mg2R,解得:v1′=8 m/s;以向右為正方向,由動量定理得,球m從軌道底端A運(yùn)動到頂端B的過程中所受合外力沖量大小為:I=Δp=mv1′-mv1=0.2(-8) Ns-0.29 Ns=-3.4 Ns,則合外力沖量大小為3.4 Ns,故A正確;M離開輕彈簧時獲得的速度為3 m/s,故B錯誤;設(shè)圓軌道半徑為r時,飛出B后水平位移最大,從A到B由機(jī)械能守恒定律得:mv=mv1′2+mg2r,在最高點(diǎn),由牛頓第二定律得:mg+N=m,m從B點(diǎn)飛出,需要滿足:N≥0,飛出后,小球做平拋運(yùn)動:2r=gt2,x=v1′t,當(dāng)8.1-4r=4r時,即r=1.012 5 m時,x為最大,球m從B點(diǎn)飛出后落在水平桌面上的水平距離隨軌道半徑的增大先增大后減小,故C錯誤;由動量定理得,彈簧彈開過程,彈力對m的沖量大小為I=Δp=mv1=0.29 Ns=1.8 Ns,故D正確.
三、計(jì)算題
11.假設(shè)塵埃與飛船發(fā)生的是彈性碰撞,且不考慮塵埃間的相互作用.為了保證飛船能以速度v0勻速穿過塵埃云,在剛進(jìn)入塵埃云時,飛船立即開啟內(nèi)置的離子加速器.已知該離子加速器是利用電場加速帶電粒子,形成向外發(fā)射的高速(遠(yuǎn)遠(yuǎn)大于飛船速度)粒子流,從而對飛行器產(chǎn)生推力的.若發(fā)射的是一價陽離子,每個陽離子的質(zhì)量為m,加速電壓為U,元電荷為e.在加速過程中飛行器質(zhì)量的變化可忽略,求單位時間內(nèi)射出的陽離子數(shù).(飛船可視為橫截面積為S的圓柱體,塵埃云分布均勻,密度為ρ)
解析:設(shè)在很短的時間Δt內(nèi),與飛船碰撞的塵埃的質(zhì)量為m′,所受飛船的作用力為f′,飛船的質(zhì)量為M.飛船與塵埃發(fā)生的是彈性碰撞,根據(jù)動量守恒定律和機(jī)械能守恒定律,有Mv0=Mv1+m′v2
Mv=Mv+m′v 解得v2=v0
由于M?m′,所以碰撞后塵埃的速度v2=2v0
對塵埃,根據(jù)動量定理有f′Δt=m′v2,其中m′=ρSv0Δt
則飛船所受阻力f′=2ρSv
設(shè)一個離子在電場中加速后獲得的速度為v,根據(jù)動能定理,有eU=mv2
設(shè)單位時間內(nèi)射出的離子數(shù)為n,在很短的時間Δt內(nèi),根據(jù)動量定理,有FΔt=nΔtmv
則飛船所受動力F=nmv
飛船做勻速運(yùn)動,則有F=f′
解得n=ρSv.
答案:ρSv
12.如圖所示,光滑水平面上有一質(zhì)量M=4.0 kg的平板車,車的上表面是一段長L=1.5 m的粗糙水平軌道,水平軌道左側(cè)連一半徑R=0.25 m的四分之一光滑圓弧軌道,圓弧軌道與水平軌道在點(diǎn)O′相切.現(xiàn)將一質(zhì)量m=1.0 kg的小物塊(可視為質(zhì)點(diǎn))從平板車的右端以水平向左的初速度v0滑上平板車,小物塊與水平軌道間的動摩擦因數(shù)μ=0.5,小物塊恰能到達(dá)圓弧軌道的最高點(diǎn)A.取g=10 m/s2,求:
(1)小物塊滑上平板車的初速度v0的大??;
(2)小物塊與車最終相對靜止時,它距點(diǎn)O′的距離.
解析:(1)平板車和小物塊組成的系統(tǒng)水平方向動量守恒,設(shè)小物塊到達(dá)圓弧軌道最高點(diǎn)A時,二者的共同速度為v1
由動量守恒得:mv0=(M+m)v1①
由能量守恒得:mv-(M+m)v=mgR+μmgL②
聯(lián)立①②并代入數(shù)據(jù)解得:v0=5 m/s③
(2)設(shè)小物塊最終與車相對靜止時,二者的共同速度為v2,從小物塊滑上平板車,到二者相對靜止的過程中,由動量守恒得:mv0=(M+m)v2④
設(shè)小物塊與車最終相對靜止時,它距O′點(diǎn)的距離為x,由能量守恒得:mv-(M+m)v=μmg(L+x)⑤
聯(lián)立③④⑤并代入數(shù)據(jù)解得:x=0.5 m.
答案:(1)5 m/s (2)0.5 m
鏈接地址:http://m.kudomayuko.com/p-6221454.html