2019高考數(shù)學(xué)大二輪復(fù)習(xí) 第一部分 思想方法研析指導(dǎo) 思想方法訓(xùn)練2 分類(lèi)討論思想 理.doc
《2019高考數(shù)學(xué)大二輪復(fù)習(xí) 第一部分 思想方法研析指導(dǎo) 思想方法訓(xùn)練2 分類(lèi)討論思想 理.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019高考數(shù)學(xué)大二輪復(fù)習(xí) 第一部分 思想方法研析指導(dǎo) 思想方法訓(xùn)練2 分類(lèi)討論思想 理.doc(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
思想方法訓(xùn)練2 分類(lèi)討論思想 一、能力突破訓(xùn)練 1.已知函數(shù)f(x)=-x2+ax,x≤1,2ax-5,x>1,若存在x1,x2∈R,且x1≠x2,使得f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是 ( ) A.(-∞,2) B.(-∞,4) C.[2,4] D.(2,+∞) 2.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,若b2+c2-a2=3bc,且b=3a,則下列關(guān)系一定不成立的是( ) A.a=c B.b=c C.2a=c D.a2+b2=c2 3.若a>0,且a≠1,p=loga(a3+1),q=loga(a2+1),則p,q的大小關(guān)系是( ) A.p=q B.pq D.當(dāng)a>1時(shí),p>q;當(dāng)00,且x≠1,則函數(shù)y=lg x+logx10的值域?yàn)?( ) A.R B.[2,+∞) C.(-∞,-2] D.(-∞,-2]∪[2,+∞) 7.設(shè)Sn是等比數(shù)列{an}的前n項(xiàng)和,S3,S9,S6成等差數(shù)列,且a2+a5=2am,則m等于( ) A.6 B.7 C.8 D.10 8.已知三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,AB=BC=CA=3,SA=SB=SC,球心O到平面ABC的距離為1,則SA與平面ABC所成角的大小為( ) A.30 B.60 C.30或60 D.45或60 9.已知函數(shù)y=ax(a>0,且a≠1)在[1,2]上的最大值比最小值大,則a的值是 . 10.已知函數(shù)f(x)=|ln x|,g(x)=0,01,則方程|f(x)+g(x)|=1實(shí)根的個(gè)數(shù)為 . 11.已知函數(shù)f(x)=2asin2x-23asin xcos x+a+b(a≠0)的定義域?yàn)?,π2,值域?yàn)閇-5,1],求常數(shù)a,b的值. 12.設(shè)a>0,函數(shù)f(x)= x2-(a+1)x+a(1+ln x). (1)求曲線(xiàn)y=f(x)在(2,f(2))處與直線(xiàn)y=-x+1垂直的切線(xiàn)方程; (2)求函數(shù)f(x)的極值. 二、思維提升訓(xùn)練 13.若直線(xiàn)l過(guò)點(diǎn)P-3,-32且被圓x2+y2=25截得的弦長(zhǎng)是8,則直線(xiàn)l的方程為( ) A.3x+4y+15=0 B.x=-3或y=- C.x=-3 D.x=-3或3x+4y+15=0 14.已知函數(shù)f(x)=110x+1(x≤1),lnx-1(x>1),則方程f(x)=ax恰有兩個(gè)不同實(shí)數(shù)根時(shí),實(shí)數(shù)a的取值范圍是(注:e為自然對(duì)數(shù)的底數(shù))( ) A.(-1,0] B.-1,110 C.(-1,0]∪110,1e2 D.-1,1e2 15.已知a為實(shí)數(shù),函數(shù)f(x)=|x2-ax|在區(qū)間[0,1]上的最大值記為g(a).當(dāng)a= 時(shí),g(a)的值最小. 16.已知函數(shù)f(x)=aln x+x2(a為實(shí)數(shù)). (1)求函數(shù)f(x)在區(qū)間[1,e]上的最小值及相應(yīng)的x值; (2)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實(shí)數(shù)a的取值范圍. 17.設(shè)函數(shù)f(x)=αcos 2x+(α-1)(cos x+1),其中α>0,記|f(x)|的最大值為A. (1)求f(x); (2)求A; (3)證明|f(x)|≤2A. 思想方法訓(xùn)練2 分類(lèi)討論思想 一、能力突破訓(xùn)練 1.B 解析 當(dāng)-a-2<1時(shí),顯然滿(mǎn)足條件,即a<2;當(dāng)a≥2時(shí),-1+a>2a-5,即2≤a<4.綜上知,a<4,故選B. 2.B 解析 在△ABC中,由余弦定理得cos A=b2+c2-a22bc=3bc2bc=32,則A=π6. 又b=3a,由正弦定理,得sin B=3sin A=32,則B=π3或B=2π3. 當(dāng)B=π3時(shí),△ABC為直角三角形,選項(xiàng)C,D成立; 當(dāng)B=2π3時(shí),△ABC為等腰三角形,選項(xiàng)A成立,故選B. 3.C 解析 當(dāng)0loga(a2+1),即p>q. 當(dāng)a>1時(shí),y=ax和y=logax在其定義域上均為增函數(shù),∴a3+1>a2+1, ∴l(xiāng)oga(a3+1)>loga(a2+1),即p>q. 綜上可得p>q. 4.C 解析 焦點(diǎn)在x軸上時(shí),ba=34,此時(shí)離心率e=ca=54;焦點(diǎn)在y軸上時(shí),ab=34,此時(shí)離心率e=ca=53,故選C. 5.C 解析 不妨設(shè)|AB|=2,以AB中點(diǎn)O為原點(diǎn),AB所在直線(xiàn)為x軸建立平面直角坐標(biāo)系xOy,則A(-1,0),B(1,0),設(shè)M(x,y),則N(x,0),MN=(0,-y),AN=(x+1,0),NB=(1-x,0),代入已知式子得λx2+y2=λ,當(dāng)λ=1時(shí),曲線(xiàn)為A;當(dāng)λ=2時(shí),曲線(xiàn)為B;當(dāng)λ<0時(shí),曲線(xiàn)為D,所以選C. 6.D 解析 當(dāng)x>1時(shí),y=lg x+logx10=lg x+1lgx≥2lgx1lgx=2;當(dāng)0 1時(shí),y=ax在區(qū)間[1,2]上遞增,故a2-a=,得a=;當(dāng)01,g(x)=0,0 1, 所以方程|p(x)|=1有2個(gè)解,即方程|ln x+x2-6|=1有2個(gè)解. 綜上可知,方程|f(x)+g(x)|=1共有4個(gè)實(shí)根. 11.解 f(x)=a(1-cos 2x)-3asin 2x+a+b =-2asin2x+π6+2a+b. ∵x∈0,π2,∴2x+π6∈π6,76π, ∴-12≤sin2x+π6≤1. 因此,由f(x)的值域?yàn)閇-5,1], 可得a>0,-2a-12+2a+b=1,-2a1+2a+b=-5 或a<0,-2a1+2a+b=1,-2a-12+2a+b=-5, 解得a=2,b=-5或a=-2,b=1. 12.解 (1)由已知x>0,f(x)=x-(a+1)+ax. 因?yàn)榍€(xiàn)y=f(x)在(2,f(2))處切線(xiàn)的斜率為1, 所以f(2)=1,即2-(a+1)+a2=1,所以a=0, 此時(shí)f(2)=2-2=0, 故曲線(xiàn)f(x)在(2,f(2))處的切線(xiàn)方程為x-y-2=0. (2)f(x)=x-(a+1)+ax=x2-(a+1)x+ax=(x-1)(x-a)x. ①當(dāng)00,函數(shù)f(x)單調(diào)遞增; 若x∈(a,1),則f(x)<0,函數(shù)f(x)單調(diào)遞減; 若x∈(1,+∞),則f(x)>0,函數(shù)f(x)單調(diào)遞增. 此時(shí)x=a是f(x)的極大值點(diǎn),x=1是f(x)的極小值點(diǎn), 函數(shù)f(x)的極大值是f(a)=-12a2+aln a,極小值是f(1)=-12. ②當(dāng)a=1時(shí),若x∈(0,1),則f(x)>0,若x=1,則f(x)=0,若x∈(1,+∞),則f(x)>0,所以函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,此時(shí)f(x)沒(méi)有極值點(diǎn),也無(wú)極值. ③當(dāng)a>1時(shí),若x∈(0,1),則f(x)>0,函數(shù)f(x)單調(diào)遞增; 若x∈(1,a),則f(x)<0,函數(shù)f(x)單調(diào)遞減; 若x∈(a,+∞),則f(x)>0,函數(shù)f(x)單調(diào)遞增,此時(shí)x=1是f(x)的極大值點(diǎn),x=a是f(x)的極小值點(diǎn),函數(shù)f(x)的極大值是f(1)=-12,極小值是f(a)=-12a2+aln a. 綜上,當(dāng)01時(shí),f(x)的極大值是-12,極小值是-12a2+aln a. 二、思維提升訓(xùn)練 13.D 解析 若直線(xiàn)l的斜率不存在,則該直線(xiàn)的方程為x=-3,代入圓的方程解得y=4,故直線(xiàn)l被圓截得的弦長(zhǎng)為8,滿(mǎn)足條件;若直線(xiàn)l的斜率存在,不妨設(shè)直線(xiàn)l的方程為y+=k(x+3),即kx-y+3k-=0,因?yàn)橹本€(xiàn)l被圓截得的弦長(zhǎng)為8,故半弦長(zhǎng)為4,又圓的半徑為5,則圓心(0,0)到直線(xiàn)l的距離為52-42=3k-32k2+1,解得k=-,此時(shí)直線(xiàn)l的方程為3x+4y+15=0. 14.C 解析 因?yàn)榉匠蘤(x)=ax恰有兩個(gè)不同的實(shí)數(shù)根,所以y=f(x)與y=ax的圖象有2個(gè)交點(diǎn),a表示直線(xiàn)y=ax的斜率.當(dāng)a>0,x>1時(shí),y=1x.設(shè)切點(diǎn)為(x0,y0),k=1x0,所以切線(xiàn)方程為y-y0=1x0(x-x0),而切線(xiàn)過(guò)原點(diǎn),所以y0=1,x0=e2,k=1e2,所以切線(xiàn)l1的斜率為1e2.設(shè)過(guò)原點(diǎn)與y=110x+1平行的直線(xiàn)為l2,則直線(xiàn)l2的斜率為110,所以當(dāng)直線(xiàn)在l1和l2之間時(shí),符合題意,此時(shí)實(shí)數(shù)a的取值范圍是110,1e2.當(dāng)a<0時(shí),設(shè)過(guò)原點(diǎn)與點(diǎn)(1,-1)的直線(xiàn)為l3,其斜率為-1,則在l3的位置以O(shè)為中心逆時(shí)針旋轉(zhuǎn)一直轉(zhuǎn)到水平位置都符合題意,此時(shí)實(shí)數(shù)a的取值范圍是(-1,0].綜上所述,實(shí)數(shù)a的取值范圍是(-1,0]∪110,1e2,故選C. 15.22-2 解析 當(dāng)a≤0時(shí),在區(qū)間[0,1]上,f(x)=|x2-ax|=x2-ax,且在區(qū)間[0,1]上為增函數(shù),當(dāng)x=1時(shí),f(x)取得的最大值為f(1)=1-a; 當(dāng)00,解得-a2 0, 因而a≥x2-2xx-lnx,x∈[1,e],令g(x)=x2-2xx-lnx(x∈[1,e]), 則g(x)=(x-1)(x+2-2lnx)(x-lnx)2, 當(dāng)x∈[1,e]時(shí),x-1≥0,ln x≤1,x+2-2ln x>0, 從而g(x)≥0(僅當(dāng)x=1時(shí)取等號(hào)), 所以g(x)在區(qū)間[1,e]上是增函數(shù), 故g(x)min=g(1)=-1, 所以實(shí)數(shù)a的取值范圍是[-1,+∞). 17.(1)解 f(x)=-2αsin 2x-(α-1)sin x. (2)解 (分類(lèi)討論)當(dāng)α≥1時(shí), |f(x)|=|αcos 2x+(α-1)(cos x+1)|≤α+2(α-1)=3α-2=f(0). 因此A=3α-2. 當(dāng)0<α<1時(shí),將f(x)變形為 f(x)=2αcos2x+(α-1)cos x-1. 令g(t)=2αt2+(α-1)t-1,則A是|g(t)|在[-1,1]上的最大值, g(-1)=α,g(1)=3α-2,且當(dāng)t=1-α4α?xí)r,g(t)取得極小值,極小值為g1-α4α=-(α-1)28α-1=-α2+6α+18α. 令-1<1-α4α<1,解得α<-13(舍去),α>15. 當(dāng)0<α≤15時(shí),g(t)在區(qū)間(-1,1)內(nèi)無(wú)極值點(diǎn), |g(-1)|=α,|g(1)|=2-3α,|g(-1)|<|g(1)|, 所以A=2-3α. 當(dāng)15<α<1時(shí),由g(-1)-g(1)=2(1-α)>0, 知g(-1)>g(1)>g1-α4α. 又g1-α4α-|g(-1)|=(1-α)(1+7α)8α>0, 所以A=g1-α4α=α2+6α+18α. 綜上,A=2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1. (3)證明 由(1)得|f(x)|=|-2αsin 2x-(α-1)sin x|≤2α+|α-1|. 當(dāng)0<α≤15時(shí),|f(x)|≤1+α≤2-4α<2(2-3α)=2A. 當(dāng)15<α<1時(shí),A=α8+18α+34≥1, 所以|f(x)|≤1+α<2A. 當(dāng)α≥1時(shí),|f(x)|≤3α-1≤6α-4=2A. 所以|f(x)|≤2A.
- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019高考數(shù)學(xué)大二輪復(fù)習(xí) 第一部分 思想方法研析指導(dǎo) 思想方法訓(xùn)練2 分類(lèi)討論思想 2019 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 第一 部分 思想 方法 研析 指導(dǎo) 訓(xùn)練 分類(lèi) 討論
鏈接地址:http://m.kudomayuko.com/p-6336312.html