雙前軸轉(zhuǎn)向汽車輪間和軸間側(cè)滑量檢驗(yàn)臺(tái)設(shè)計(jì)
雙前軸轉(zhuǎn)向汽車輪間和軸間側(cè)滑量檢驗(yàn)臺(tái)設(shè)計(jì),雙前軸轉(zhuǎn)向汽車輪間和軸間側(cè)滑量檢驗(yàn)臺(tái)設(shè)計(jì),前軸,轉(zhuǎn)向,汽車,以及,軸間側(cè)滑量,檢驗(yàn),檢修,設(shè)計(jì)
天津工程師范學(xué)院
畢業(yè)設(shè)計(jì)(論文)指導(dǎo)檢查工作記錄表
系別
汽車工程系
班級(jí)
汽修0402班
學(xué)生姓名
黃浩秋
指導(dǎo)教師
張玉書
課題名稱
雙前軸轉(zhuǎn)向汽車輪間與軸間側(cè)滑量檢測(cè)臺(tái)設(shè)計(jì)
時(shí)間
內(nèi)容及指導(dǎo)記錄
指導(dǎo)教師
簽字
第一周
復(fù)習(xí)已有的參考文獻(xiàn)和熟悉一下Solidworks軟件。
第二周
進(jìn)行檢測(cè)臺(tái)傳動(dòng)機(jī)構(gòu)形式的設(shè)計(jì)和零件材料的選擇與計(jì)算。
第三~五周
用Solidworks制作各傳動(dòng)件零件圖。
第六~七周
用Solidworks生成各裝置的總成圖。
第八周
用Solidworks生成機(jī)械結(jié)構(gòu)部分的總裝配圖。
第九周
應(yīng)用Solidworks進(jìn)行機(jī)械結(jié)構(gòu)部分的動(dòng)畫模擬。
第十周
中英文文獻(xiàn)的翻譯。
第十一~十二周
應(yīng)用Solidworks將機(jī)械結(jié)構(gòu)部分的三維圖轉(zhuǎn)化為二維圖。
第十三周
將二維圖導(dǎo)入AutoCAD進(jìn)行尺寸標(biāo)注等后期處理并出圖。
第十四周
交給指導(dǎo)老師檢查,并根據(jù)老師的意見進(jìn)行修改。
第十五周
撰寫設(shè)計(jì)說明書,準(zhǔn)備答辯。
注:本表格同畢業(yè)設(shè)計(jì)(論文)一同裝訂成冊(cè),由所在單位歸檔保存。
天津工程師范學(xué)院教務(wù)處文件
津工師教處發(fā)〔2007〕39號(hào)
關(guān)于印發(fā)《天津工程師范學(xué)院本科生畢業(yè)設(shè)計(jì)(論文)
撰寫細(xì)則》的通知
各系、部:
為保證我校本科生畢業(yè)設(shè)計(jì)(論文)的質(zhì)量,實(shí)現(xiàn)我校畢業(yè)設(shè)計(jì)(論文)格式的規(guī)范化,特制定《天津工程師范學(xué)院本科生畢業(yè)設(shè)計(jì)(論文)撰寫細(xì)則》,并制作成模板,請(qǐng)遵照?qǐng)?zhí)行。
附:畢業(yè)設(shè)計(jì)(論文)撰寫模板
二○○七年五月十日
主題詞:教學(xué)工作 畢業(yè)設(shè)計(jì)(論文) 撰寫細(xì)則 通知
?。ü灿?0份)
抄報(bào):院領(lǐng)導(dǎo)
天津工程師范學(xué)院教務(wù)處 2007年5月10日印發(fā)
毛體,圖片長(zhǎng)9.98cm,寬2.28cm,本模版中所有帶顏色的文本框或文字請(qǐng)?zhí)鎿Q或刪除
Tianjin University of Technology and Education
宋體,小初號(hào),加粗,字間空一半角字符
Times New Roman,小二號(hào),加粗
畢 業(yè) 設(shè) 計(jì)
(或畢業(yè)論文)
宋體,小三號(hào),加粗
專 業(yè): ×××××××× (全稱)
班級(jí)學(xué)號(hào): ×××× - ××
學(xué)生姓名: ×××
指導(dǎo)教師: ××× 教授 (帶職稱)
宋體,四號(hào),加粗
二〇××年 六 月
宋體,小三號(hào),加粗
天津工程師范學(xué)院本科生畢業(yè)設(shè)計(jì)(論文)
宋體,二號(hào),加粗
中文題目
English title
宋體,小三號(hào),加粗
專業(yè)班級(jí):××××××(用簡(jiǎn)稱填寫)
學(xué)生姓名:×××
指導(dǎo)教師:××× 教授
宋體,四號(hào),加粗
系 別:××××××××
20 年 月
除英文正文外,所有正文采用宋體,小四號(hào)
除英文標(biāo)題外,所有標(biāo)題采用黑體,三號(hào),加粗
摘 要
摘要應(yīng)具有獨(dú)立性和自含性,即不需閱讀報(bào)告、論文的全文,就能獲得必要的信息,供讀者確定有無必要閱讀全文。摘要是一篇完整的短文,一般應(yīng)說明研究工作目的、實(shí)驗(yàn)方法、結(jié)果和最終結(jié)論等,而重點(diǎn)是結(jié)果和結(jié)論。
摘要要求結(jié)構(gòu)嚴(yán)謹(jǐn),表達(dá)簡(jiǎn)明,語義確切,字?jǐn)?shù)300-500字為宜。
摘要中應(yīng)排除本學(xué)科領(lǐng)域已成為常識(shí)的內(nèi)容;不要把應(yīng)在文獻(xiàn)綜述中出現(xiàn)的內(nèi)容寫入摘要;也不要對(duì)論文內(nèi)容作詮釋和評(píng)論(尤其是自我評(píng)價(jià))。
用第三人稱,不必使用“本文”、“作者”等作為主語。
單位制一律換算成國(guó)際標(biāo)準(zhǔn)計(jì)量單位制,除了實(shí)在無法變通以外,一般不用數(shù)學(xué)公式和化學(xué)結(jié)構(gòu)式,不得出現(xiàn)插圖、表格。
宋體,小四,加粗
縮略語、簡(jiǎn)稱、代號(hào),除了相鄰專業(yè)的讀者也能清楚理解的以外,在首次出現(xiàn)時(shí)必須加以說明。
關(guān)鍵詞:畢業(yè)設(shè)計(jì)(論文);撰寫細(xì)則;行文格式
關(guān)鍵詞是供檢索用的主題詞條,應(yīng)采用能覆蓋畢業(yè)設(shè)計(jì)(論文)主要內(nèi)容的通用技術(shù)詞條(參照相應(yīng)的技術(shù)術(shù)語標(biāo)準(zhǔn))。關(guān)鍵詞一般列3~5個(gè),按詞條的外延層次排列(外延大的排在前面),關(guān)鍵詞間用分號(hào)間隔,末尾不加標(biāo)點(diǎn)。
ABSTRACT
Times New Roman,三號(hào),加粗
英文摘要另起一頁,內(nèi)容應(yīng)與“中文摘要”對(duì)應(yīng)。使用第三人稱,用現(xiàn)在時(shí)態(tài)編寫。
Key Words:(與上文之間空一行,內(nèi)容應(yīng)與中文“關(guān)鍵詞”一致。詞間用分號(hào)間隔,末尾不加標(biāo)點(diǎn)。)
目 錄
1畢業(yè)設(shè)計(jì)(論文)的結(jié)構(gòu) 1
1.1題目 1
1.2摘要 1
1.3目錄 1
1.4引言 1
1.5 正文 1
1.6結(jié)論 2
在該頁面中點(diǎn)擊鼠標(biāo)右鍵,選擇“更新域…”,然后選擇“更新整個(gè)目錄”,即可自動(dòng)生成目錄。選擇字體,一級(jí)標(biāo)題為黑體小四號(hào),二級(jí)標(biāo)題和三級(jí)標(biāo)題為宋體小四號(hào)。
注意:刪除此文本框。
1.7參考文獻(xiàn) 2
1.8附錄(或調(diào)研報(bào)告) 2
1.9致謝 2
2 正文要求 3
2.1格式要求 3
2.1.1頁面設(shè)置及格式 3
2.1.2標(biāo)題要求 4
2.1.3標(biāo)題設(shè)置方法 4
2.2語言表述 5
2.2.1語言表述 5
2.2.2行文要求 5
2.3 圖、表格和公式要求 6
2.3.1圖格式要求 6
2.3.2 表格式要求 7
2.3.3 公式 8
3 規(guī)范表達(dá)注意事項(xiàng) 9
3.1 名詞術(shù)語 9
3.2 外文字母 9
3.2.1 斜體 9
3.2.2 正體 9
3.3 數(shù)字 10
3.4量和單位 10
4 裝訂注意事項(xiàng) 11
4.1畢業(yè)設(shè)計(jì)(論文)裝訂順序 11
4.2外文翻譯 11
4.3裝訂規(guī)范要求 11
結(jié) 論 12
參考文獻(xiàn) 13
附錄1: 封面樣例 14
致 謝 15
16
天津工程師范學(xué)院2007屆本科生畢業(yè)設(shè)計(jì)(論文)
五號(hào)宋體、居中,從正文第一頁起始
用三號(hào)黑體居中,行間距20磅,段前18磅,段后30磅,數(shù)字與標(biāo)題之間空一格
1畢業(yè)設(shè)計(jì)(論文)的結(jié)構(gòu)
一篇完整的畢業(yè)設(shè)計(jì)或論文通常由題目、摘要、目錄、引言、正文、結(jié)論、參考文獻(xiàn)、附錄、致謝等幾部分構(gòu)成,除外語類專業(yè)外一律采用漢語撰寫。
本科畢業(yè)說明書的總篇幅包括圖表在內(nèi)(附錄除外)一般以1-1.5萬字為宜,最多不要超過2萬字;畢業(yè)論文的總篇幅一般在1萬字左右。
四號(hào)黑體,行間距20磅,段前0.5行,段后0.5行,序數(shù)頂格書寫
1.1題目
題目應(yīng)該簡(jiǎn)短、明確,要有概括性。讓人看后能大致了解文章的確切內(nèi)容、專業(yè)特點(diǎn)和學(xué)科范疇。因此要明確、準(zhǔn)確、精煉地直接概括描述所研究的主要內(nèi)容和結(jié)果。題目字?jǐn)?shù)要適當(dāng),一般不宜超過20字。如果有些細(xì)節(jié)必須放進(jìn)題目里,為避免冗長(zhǎng),可以將細(xì)節(jié)放進(jìn)副標(biāo)題中。
1.2摘要
摘要在畢業(yè)設(shè)計(jì)說明書或論文的主體之前,用中英文撰寫,要求參見中、英文摘要說明,樣式見附錄。
1.3目錄
顯示標(biāo)題級(jí)別最多3級(jí)并標(biāo)明頁號(hào)。注意目錄內(nèi)容應(yīng)與正文中的標(biāo)題相一致,頁碼相對(duì)應(yīng)。
1.4引言
引言也稱緒論,說明研究工作的目的、范圍、相關(guān)領(lǐng)域的前人工作和知識(shí)空白、理論基礎(chǔ)和分析、研究設(shè)想、預(yù)期結(jié)果和意義等。應(yīng)言簡(jiǎn)意賅,不要與摘要雷同,更不要成為摘要的注釋。一般教科書中有的知識(shí),在引言中不必贅述。
引言篇幅不宜過長(zhǎng),字?jǐn)?shù)不得超過3千字,且不少于1.5千字。
1.5 正文
正文的主體是對(duì)研究工作的詳細(xì)表述,可以分章論述。其內(nèi)容包括:研究工作的基本前提、假設(shè)和條件;模型的建立,實(shí)驗(yàn)方案的擬定;設(shè)計(jì)計(jì)算的主要方法和內(nèi)容;實(shí)驗(yàn)方法、內(nèi)容及其分析;理論論證在課題中的應(yīng)用,課題得出的結(jié)果,以及對(duì)結(jié)果的討論等。
頁碼為阿拉伯?dāng)?shù)字,五號(hào)宋體,居中,正文起始頁為1
論文中還應(yīng)加入本研究的經(jīng)濟(jì)特性的分析,如投資效率、利潤(rùn)情況、對(duì)環(huán)境污染情況的討論等。
1.6結(jié)論
結(jié)論是整篇論文的歸結(jié),對(duì)全篇論文起到畫龍點(diǎn)睛的作用,必須單獨(dú)書寫。結(jié)論的內(nèi)容不只是前面實(shí)驗(yàn)結(jié)果部分已經(jīng)得出的研究結(jié)果的簡(jiǎn)單重復(fù),而應(yīng)該有進(jìn)一步的認(rèn)識(shí)。
1.7參考文獻(xiàn)
參考文獻(xiàn)只列出作者直接閱讀過、在正文中被引用過的文獻(xiàn)資料。參考文獻(xiàn)一律放在論文結(jié)束后,按文中引用的順序一一列出。參考文獻(xiàn)不能少于15個(gè),包括近三年的科技論文和一定量的外文資料。
1.8附錄(或調(diào)研報(bào)告)
附錄不是必須,內(nèi)容一般包括正文內(nèi)不便列出的冗長(zhǎng)公式推導(dǎo)、輔助性數(shù)學(xué)工具、符號(hào)說明(含縮寫)、計(jì)算程序及說明等,也可以是調(diào)研報(bào)告。附錄的內(nèi)容應(yīng)由獨(dú)立的完整心,并應(yīng)由題目以概括附錄的內(nèi)容。多個(gè)附錄要按順序編號(hào),在正文中提到有關(guān)內(nèi)容時(shí)要注明參看附錄。
1.9致謝
限一頁。對(duì)幫助過自己的人表達(dá)謝意不僅是一種禮貌,更是對(duì)他人勞動(dòng)的尊重,是治學(xué)者應(yīng)有的思想作風(fēng)。
2 正文要求
本科生畢業(yè)設(shè)計(jì)(論文)的正文是主體部分,要著重反映自己的工作,突出新的見解,例如新思想、新觀點(diǎn)、新規(guī)律、新研究方法、新結(jié)果等。正文可以包括:調(diào)查對(duì)象、實(shí)驗(yàn)和觀測(cè)方法、儀器設(shè)備、材料原料、實(shí)驗(yàn)和觀測(cè)結(jié)果、計(jì)算方法和編程原理、數(shù)據(jù)資料、經(jīng)過加工整理的圖表、形成的論點(diǎn)和導(dǎo)出的結(jié)論等。
正文要求論點(diǎn)正確,推理嚴(yán)謹(jǐn),數(shù)據(jù)可靠,文字精練,條理分明,文字圖表清晰整齊。利用別人研究成果必須附加說明。引用前人材料必須引證原著文字。在論文的行文上,要注意語句通順,達(dá)到科技論文所必須具備的“正確、準(zhǔn)確、明確”的要求。
由于研究工作涉及的學(xué)科、選題、研究方法、工作進(jìn)程、結(jié)果表達(dá)方式等有很大的差異,不對(duì)正文內(nèi)容作統(tǒng)一硬性的規(guī)定。但是,必須實(shí)事求是,合乎邏輯,層次分明。
小四號(hào)黑體,行間距20磅,段前0.5行,段后0.5行,序數(shù)頂格書寫
2.1格式要求
2.1.1頁面設(shè)置及格式
紙型:A4(ISO)紙,單面打印。
頁邊距:上3cm,下2.5cm,左3cm,右2.5cm。
頁眉:2cm,內(nèi)容為“天津工程師范學(xué)院2007屆本科生畢業(yè)設(shè)計(jì)(論文)”,采用五號(hào)宋體、居中,從正文第一頁起始。
頁腳:1.75cm,頁碼為阿拉伯?dāng)?shù)字,五號(hào)宋體,居中,正文起始頁為1。
裝訂線:0cm,左側(cè)裝訂。
封面:采用我院統(tǒng)一格式。
摘要:“摘要”二字為三號(hào)黑體,居中,行間距20磅,段前18磅,段后30磅,兩字間空兩個(gè)中文字符。摘要內(nèi)容為小四號(hào)宋體。英文摘要“ABSTRACT”為三號(hào)Times New Roman,內(nèi)容為小四號(hào)Times New Roman。鍵詞,用小四號(hào)Times New Roman。
關(guān)鍵詞:關(guān)鍵詞要與上文空一行,“關(guān)鍵詞”三字為小四號(hào)宋體加粗,緊隨其后為關(guān)鍵詞,采用小四號(hào)宋體?!癒ey words”一詞為小四號(hào)Times New Roman加粗,緊隨其后為關(guān)
目錄:“目錄”二字為三號(hào)黑體,下空二行為各級(jí)標(biāo)題及其開始頁碼,一級(jí)標(biāo)題采用小四黑體,其余采用小四號(hào)宋體。頁碼放在行末,目錄內(nèi)容和頁碼之間用虛線連接。低級(jí)標(biāo)題比高級(jí)標(biāo)題縮進(jìn)兩個(gè)中文字符。
正文:小四號(hào)宋體,段落行間距為20磅,段前段后均未0。首行縮進(jìn)2個(gè)中文字符。
參考文獻(xiàn):“參考文獻(xiàn)”四字采用一級(jí)標(biāo)題,內(nèi)容的字體為小四宋體。參考文獻(xiàn)在文內(nèi)的標(biāo)注采用順序編碼制,對(duì)引用的文獻(xiàn),按它們?cè)谡撐闹谐霈F(xiàn)的先后用阿拉伯?dāng)?shù)字連續(xù)編碼,將序號(hào)置于上標(biāo)方括號(hào)內(nèi),如“……對(duì)此做了研究[3]”。注意只有文獻(xiàn)第一次在文中出現(xiàn)時(shí)才編序號(hào),即一篇文獻(xiàn)只有一個(gè)序號(hào),若某文獻(xiàn)在文中被多次引用,在幾個(gè)引用處都要標(biāo)注同一個(gè)序號(hào)。若在正文的一處引用了多篇文獻(xiàn),標(biāo)注時(shí)只用一個(gè)方括號(hào),括號(hào)內(nèi)列寫這幾篇文獻(xiàn)的序號(hào):若幾個(gè)序號(hào)是連續(xù)的,只標(biāo)注起、止序號(hào),兩序號(hào)之間加半字線“-”號(hào);若幾個(gè)序號(hào)不連續(xù),各序號(hào)之間加逗號(hào),如“[3-5,8]”表示在該處引用了3、4、5和8 號(hào)文獻(xiàn)。
附錄:“附錄:”及其標(biāo)題用一級(jí)標(biāo)題,內(nèi)容的字體為小四宋體。附錄中的圖表公式另編排序號(hào),與正文分開。
致謝:“致謝”用一級(jí)標(biāo)題兩字中間空兩個(gè)中文字符,致謝內(nèi)容為小四號(hào)宋體。
2.1.2標(biāo)題要求
標(biāo)題要重點(diǎn)突出,層次要清楚,簡(jiǎn)明扼要。章節(jié)編號(hào)方法采用分級(jí)阿拉伯?dāng)?shù)字編號(hào)方法,即“1”、“2.1”、“3.2.1”等,兩級(jí)之間用下角圓點(diǎn)隔開,各層標(biāo)題均單獨(dú)占行書寫,每一級(jí)的末尾不加標(biāo)點(diǎn)。
第一級(jí)標(biāo)題要另起一頁,用三號(hào)黑體居中,行間距20磅,段前18磅,段后30磅,數(shù)字與標(biāo)題之間空一格;
第二級(jí)標(biāo)題為四號(hào)黑體,行間距20磅,段前0.5行,段后0.5行,序數(shù)頂格書寫;
第三級(jí)標(biāo)題為小四號(hào)黑體,行間距20磅,段前0.5行,段后0.5行,序數(shù)頂格書寫。
2.1.3標(biāo)題設(shè)置方法
標(biāo)題設(shè)置方法如圖2-1所示:
1.選中設(shè)置為標(biāo)題的字行。
2.點(diǎn)擊左上角的樣式欄,選擇標(biāo)題級(jí)別。一級(jí)標(biāo)題為標(biāo)題1,二級(jí)標(biāo)題為標(biāo)題2,三級(jí)標(biāo)題為標(biāo)題3。
3.按要求進(jìn)行格式調(diào)整,如字體、對(duì)齊方式、字號(hào)等。
4.所有標(biāo)題設(shè)置完畢后,將光標(biāo)移至目錄頁上,點(diǎn)擊“插入”、“引用”、“索引和目錄”,插入目錄并按要求調(diào)整格式。如果已插入目錄,修改時(shí)要用右鍵點(diǎn)擊目錄,選擇“更新域---”,然后選擇“更新整個(gè)目錄”并按要求調(diào)整格式。
1.選中設(shè)置為標(biāo)題的行
2. 點(diǎn)擊左上角的樣式欄
3.按要求進(jìn)行格式調(diào)整
圖2-1 標(biāo)題設(shè)置方法
2.2語言表述
2.2.1語言表述
1.正文應(yīng)層次分明、數(shù)據(jù)可靠、推理嚴(yán)謹(jǐn)、立論正確。論述必須簡(jiǎn)明扼要、重點(diǎn)突出,對(duì)同行專業(yè)人員已熟知的常識(shí)內(nèi)容,盡量減少敘述。
2.正文應(yīng)采用普通話,用詞準(zhǔn)確,語法正確、符合邏輯,文句力求精煉簡(jiǎn)明、深入淺出、通順易懂。避免采用口語俚語、生澀詞語以及非學(xué)術(shù)、專業(yè)術(shù)語。
3.正文中如出現(xiàn)一些非通用性的新名詞、新術(shù)語或新概念,需立即做出解釋。
2.2.2行文要求
畢業(yè)設(shè)計(jì)或論文一律使用打印文稿,不準(zhǔn)加貼補(bǔ)寫正文或圖表或圖片的紙條,或隨意接長(zhǎng)截短。
行文要按照1986年國(guó)務(wù)院重新發(fā)表的漢子《簡(jiǎn)化字總表》正確使用簡(jiǎn)化字,不使用非正式簡(jiǎn)體字,如圓周不要寫成“園周”,零件不要寫成“另件”。
標(biāo)點(diǎn)符號(hào)應(yīng)符合國(guó)家標(biāo)準(zhǔn)GB/T15834-1995《標(biāo)點(diǎn)符號(hào)用法》的規(guī)定。不要一個(gè)句子長(zhǎng)達(dá)幾十個(gè)字甚至一二百字,中間一個(gè)標(biāo)點(diǎn)符號(hào)也沒有;也不要使用過多的標(biāo)點(diǎn)符號(hào)而使句子過于零碎。
2.3 圖、表格和公式要求
圖、表、公式等與正文之間要有一行的間距;文中的圖、表、附注、公式一律采用阿拉伯?dāng)?shù)字分章編號(hào)。如:圖2-5,表3-2,等。
2.3.1圖格式要求
插圖須精心制作,線條清晰、美觀,不得徒手畫圖,必須按國(guó)家規(guī)定標(biāo)準(zhǔn)或工程要求用計(jì)算機(jī)繪制。插圖應(yīng)與正文呼應(yīng),切忌與文字表述重復(fù)。不得插入與正文無關(guān)的圖表或照片。插圖應(yīng)有圖題,圖序及圖名居中置于圖的下方,圖中的術(shù)語、符號(hào)、單位等應(yīng)同文字表述一致。插圖一般為嵌入型居中排列。圖中字體及大小根據(jù)實(shí)際情況自行調(diào)整。
圖2-2 跟隨冷源對(duì)溫度場(chǎng)的影響
由于圖、表放置造成的空行,或表格斷開請(qǐng)調(diào)整文字的位置填充空行或使同一表格在頁上顯示(參見圖2-3、圖2-4);如表格太長(zhǎng)一頁容不下時(shí),須將首行項(xiàng)目欄復(fù)制到后續(xù)頁上。
移動(dòng)通信就是移動(dòng)體(包括人)與固定體之間及移動(dòng)體相互之間的通信聯(lián)絡(luò),傳遞信息的一種通信方式。移動(dòng)通信技術(shù)的發(fā)展可以概括為第一、二、三代通信技術(shù)。
①第一代移動(dòng)通信技術(shù)(1G)為20世紀(jì)70年代末至80年代中期,主要采用小區(qū)制蜂窩系統(tǒng),……,是面向語音技術(shù)的模擬移動(dòng)通信技術(shù)。
圖2.5 移動(dòng)通信
③第三代移動(dòng)通信技術(shù)(3G)于2001年在一些國(guó)家開始投入市場(chǎng),比較有代表性的3G系統(tǒng)是CDMA2000、WCDMA和我國(guó)具有自主產(chǎn)權(quán)的TD-SCDMA。
衛(wèi)星通信是地面微波中繼通信的發(fā)展,是隨航天技術(shù)發(fā)展起來的現(xiàn)代通信方式。衛(wèi)星通信的特點(diǎn):
① 覆蓋面積大,通信的距離遠(yuǎn)。
② 通信路數(shù)多、容量大。
。
圖表一
圖2.4 通信技術(shù)
圖表二
不能有空行
將此段文字提前
圖2-3 調(diào)整文字填充空行
移動(dòng)通信就是移動(dòng)體(包括人)與固定體之間及移動(dòng)體相互之間的通信聯(lián)絡(luò),傳遞信息的一種通信方式。移動(dòng)通信技術(shù)的發(fā)展可以概括為第一、二、三代通信技術(shù)。
①第一代移動(dòng)通信技術(shù)(1G)為20世紀(jì)70年代末至80年代中期,主要采用小區(qū)制蜂窩系統(tǒng),……,是面向語音技術(shù)的模擬移動(dòng)通信技術(shù)。
移動(dòng)通信就是移動(dòng)體(包括人)與固定體之間及移動(dòng)體相互之間的通信聯(lián)絡(luò),傳遞信息的一種通信方式。移動(dòng)通信技術(shù)的發(fā)展可以概括為第一、二、三代通信技術(shù)。
①第一代移動(dòng)通信技術(shù)(1G)為20世紀(jì)70年代末至80年代中期,主要采用小區(qū)制蜂窩系統(tǒng),……,是面向語音技術(shù)的模擬移動(dòng)通信技術(shù)。
圖2.5 移動(dòng)通信
③第三代移動(dòng)通信技術(shù)(3G)于2001年在一些國(guó)家開始投入市場(chǎng),比較有代表性的3G系統(tǒng)是CDMA2000、WCDMA和我國(guó)具有自主產(chǎn)權(quán)的TD-SCDMA。
衛(wèi)星通信是地面微波中繼通信的發(fā)展,是隨航天技術(shù)發(fā)展起來的現(xiàn)代通信方式。衛(wèi)星通信的特點(diǎn):
① 覆蓋面積大,通信的距離遠(yuǎn)。
② 通信路數(shù)多、容量大。
③ 通信質(zhì)量好、可靠性高。
表一
圖2.5 移動(dòng)通信
表斷開
表一
移動(dòng)通信就是移動(dòng)體(包括人)與固定體之間及移動(dòng)體相互之間的通信聯(lián)絡(luò),傳遞信息的一種通信方式。移動(dòng)通信技術(shù)的發(fā)展可以概括為第一、二、三代通信技術(shù)。
①第一代移動(dòng)通信技術(shù)(1G)為20世紀(jì)70年代末至80年代中期,主要采用小區(qū)制蜂窩系統(tǒng),……,是面向語音技術(shù)的模擬移動(dòng)通信技術(shù)。移動(dòng)通信就是移動(dòng)體(包括人)與固定體之間及移動(dòng)體相互之間的通信聯(lián)絡(luò),傳遞信息的一種通信方式。移動(dòng)通信技術(shù)的發(fā)展可以概括為第一、二、三代通信技術(shù)。
①第一代移動(dòng)通信技術(shù)(1G)為20世紀(jì)70年代末至80年代中期,主要采用小區(qū)制蜂窩系統(tǒng),……,是面向語音技術(shù)的模擬移動(dòng)通信技術(shù)。
③第三代移動(dòng)通信技術(shù)(3G)于2001年在一些國(guó)家開始投入市場(chǎng),比較有代表性的3G系統(tǒng)是
圖2.5 移動(dòng)通信
CDMA2000、WCDMA和我國(guó)具有自主產(chǎn)權(quán)的TD-SCDMA。
衛(wèi)星通信是地面微波中繼通信的發(fā)展,是隨航天技術(shù)發(fā)展起來的現(xiàn)代通信方式。衛(wèi)星通信的特點(diǎn):
① 覆蓋面積大,通信的距離遠(yuǎn)。
② 通信路數(shù)多、容量大。
③ 通信質(zhì)量好、可靠性高。
表一
調(diào)整內(nèi)容讓表移到下頁
圖2-4 調(diào)整文字讓同一表格在一頁上顯示
2.3.2 表格式要求
表中參數(shù)應(yīng)標(biāo)明量和單位的符號(hào)。表中字體及大小根據(jù)實(shí)際情況自行調(diào)整。表序號(hào)及表名稱置于表的上方。
表名稱:正文中的表要有中文名稱,表的中文名稱為5號(hào)宋體字,不加粗,居中并位于表上;
表尺寸:表盡量以一頁的頁面為限,一旦超限要加續(xù)表;
表位置:表居中排列,表名與上文應(yīng)留一行空格,表與下文留一空行;
表格式:三線表。三線表的組成要素包括:表序、表題、項(xiàng)目欄、表體、表注。三線表通常只有3條線,即頂線、底線和欄目線。其中頂線和底線為粗線,欄目線為細(xì)線。如下表:
表2-1 三線表
頂線
項(xiàng)目欄
表體
欄目線
底線
注 1)表中若有附注,一律用阿拉伯?dāng)?shù)字和右半圓括號(hào)按順序編排,并寫在表的下方;
2)如有特殊要求可以使用豎線。
當(dāng)然,三線表并不一定只有3條線,必要時(shí)可加輔助線,但無論加多少條輔助線,仍稱為三線表[2]。如下表:
表2-2 銷售統(tǒng)計(jì)表
產(chǎn)品
4月
5月
6月
合計(jì)
MP3
12
8
10
30
U盤
6
7
5
18
總計(jì)
18
15
15
48
2.3.3 公式
公式:編號(hào)用括號(hào)括起寫在右邊行末,其間不加虛線。
公式序號(hào):分章編號(hào),如(3-1)、(3-2)、...。對(duì)其中字母代表意義的解釋緊隨其后。公式中的字符應(yīng)調(diào)整到小四號(hào)字左右。如下公式:
(2-1)
其中,b,c,d:分別為矯正系數(shù)。
公式位置:公式居左,并縮進(jìn)2個(gè)漢字,公式上下分別要與正文間隔一空行,公式序號(hào)在公式所在行的最右邊列出。一行寫不完的長(zhǎng)公式,最好在等號(hào)或運(yùn)算符等數(shù)學(xué)符號(hào)前換行。
將分?jǐn)?shù)的分子分母平列在一行而用斜線分開時(shí),應(yīng)注意避免含義不清的情況,例如,a/bcosx會(huì)有(a/b)cosx和a/(bcosx)兩種理解。公式中分?jǐn)?shù)線的長(zhǎng)短要寫清楚,主要分?jǐn)?shù)線要與等號(hào)對(duì)齊。
3 規(guī)范表達(dá)注意事項(xiàng)
3.1 名詞術(shù)語
畢業(yè)設(shè)計(jì)或論文中的科學(xué)技術(shù)名詞術(shù)語應(yīng)使用全國(guó)自然科學(xué)名詞審定委員會(huì)審定的自然科學(xué)名詞術(shù)語和國(guó)家標(biāo)準(zhǔn)、部標(biāo)準(zhǔn)使用工程技術(shù)名詞術(shù)語。尚未編定可采用公認(rèn)共知的或慣用的名稱。表示同一概念或物理量的名詞術(shù)語,全文中要前后一致。不同物理量的符號(hào)應(yīng)避免混淆。除很熟知的外國(guó)人名(如牛頓、愛因斯坦等)只需按通常譯法寫外,其余一般使用原文,不必譯出。一般的機(jī)關(guān)、團(tuán)體、學(xué)校、研究機(jī)構(gòu)和企業(yè)等的名稱應(yīng)使用全稱,不得簡(jiǎn)稱,如不得把北京大學(xué)寫成“北大”。使用外文縮寫詞,第一次出現(xiàn)時(shí)要在括號(hào)中給出全稱并予以解釋,如CPU(Central Processing Unit,中央處理器)。作者自擬的名詞術(shù)語,在文中第一次出現(xiàn)時(shí),須加注說明。
3.2 外文字母
外文字母一律使用印刷體。文中出現(xiàn)的易混淆的字母、符號(hào)以及上下標(biāo)等,必須打印清楚或繕寫工整。要嚴(yán)格區(qū)分外文字母的文種、大小寫、正斜體和黑白體等,尤其注意上下標(biāo)字母的大小寫、正斜體以及位置的高低。
3.2.1 斜體
斜體外文字母用于表示量的符號(hào),主要用于下列場(chǎng)合:
1.變量符號(hào)、變動(dòng)附標(biāo)及函數(shù)。
2.用字母表示的數(shù)及代表點(diǎn)、線、面、體和圖形的字母。
3.特征數(shù)符號(hào),如Re(雷諾數(shù))、Fo(傅里葉數(shù))等。
4.在特定場(chǎng)合中視為常數(shù)的參數(shù)。
5.矢量、矩陣用黑體斜體。
3.2.2 正體
正體外文字母用于表示名稱及與其有關(guān)的代號(hào),主要用于下列場(chǎng)合:
1.有定義的已知函數(shù)(例如sin,exp等)。
2.其值不變的數(shù)學(xué)常數(shù)(例如e=2.718…)及已定義的算子。
3.法定計(jì)量單位、詞頭和量綱符號(hào)。
4.化學(xué)元素符號(hào)。
5.機(jī)具、儀器、設(shè)備和產(chǎn)品等的型號(hào)、代號(hào)及材料牌號(hào)。
6.硬度符號(hào)。
7.不表示量的外文縮寫字。
8.表示序號(hào)的拉丁字母。
9.量符號(hào)中為區(qū)別其它量而加的具有特定含義的非量符號(hào)下角標(biāo)。
3.3 數(shù)字
畢業(yè)設(shè)計(jì)或論文中的測(cè)量、統(tǒng)計(jì)等數(shù)字一律使用阿拉伯?dāng)?shù)字。一般敘述中不很大的數(shù)字,不宜用阿拉伯?dāng)?shù)字,如“三力作用于一點(diǎn)”、他發(fā)現(xiàn)兩顆小行星。約數(shù)可用中文數(shù)字表示,也可用阿拉伯?dāng)?shù)字表示,如“約八百公里”、“約二十五萬人”,也可寫成“約800公里”、“約25萬人”。分?jǐn)?shù)可用中文數(shù)字表示,也可用阿拉伯?dāng)?shù)字表示,但兩者表示方式不同,如“5/8”(不要寫成8分之5)或“八分之五”。
3.4量和單位
要嚴(yán)格執(zhí)行GB3100—3102:93有關(guān)量和單位的規(guī)定(具體要求請(qǐng)參閱《常用量和單位》.計(jì)量出版社,1996);
單位名稱的書寫,可以采用國(guó)際通用符號(hào),也可以用中文名稱,但全文應(yīng)統(tǒng)一,不要兩種混用。單位寫在全部數(shù)值之后,如38.25m,或38.25米。非物理量的單位,如件、臺(tái)、人、元等,可用漢字與符號(hào)構(gòu)成組合形式的單位,如:件/臺(tái)·h、元/km。在文中不要用物理量符號(hào)、計(jì)量單位符號(hào)和數(shù)學(xué)符號(hào)代替相應(yīng)名稱。例如:“鋼軌每米質(zhì)量”不要寫成“鋼軌每m質(zhì)量”,“加15mol的硫酸”不要寫成“+15mol的H2SO4”,“繞線電阻小于1Ω”不要寫成“繞線電阻<1Ω”。
4 裝訂注意事項(xiàng)
4.1畢業(yè)設(shè)計(jì)(論文)裝訂順序
1.封面、扉頁;
2.畢業(yè)設(shè)計(jì)說明書(論文)全部?jī)?nèi)容;
3.英文資料及中文翻譯;
4.畢業(yè)設(shè)計(jì)(論文)任務(wù)書、畢業(yè)設(shè)計(jì)(論文)開題報(bào)告以及畢業(yè)設(shè)計(jì)(論文)中期報(bào)告;
5.畢業(yè)設(shè)計(jì)(論文)評(píng)審表(包括指導(dǎo)教師用表、評(píng)閱人用表、答辯小組用表);
6.院級(jí)答辯評(píng)審表(選項(xiàng));
7.設(shè)計(jì)圖紙(大幅圖紙須折疊成A4大?。?;
8.畢業(yè)設(shè)計(jì)說明書(論文)電子文檔(光盤)
9.封底
4.2外文翻譯
每名學(xué)生在畢業(yè)設(shè)計(jì)(論文)期間,應(yīng)完成不少于2萬印刷符的外文翻譯。譯文不少于5千漢字。
譯文內(nèi)容必須與題目(或?qū)I(yè)內(nèi)容)有關(guān),最好是近五年出版的期刊(不可翻譯有中文譯文書籍),由指導(dǎo)教師在下達(dá)任務(wù)書時(shí)指定。
譯文應(yīng)用標(biāo)準(zhǔn)A4紙單面打字成文,格式與正文相同。
裝訂時(shí)原文在前,譯文在后。
譯文應(yīng)于畢業(yè)設(shè)計(jì)中期前完成,交指導(dǎo)教師批改。
4.3裝訂規(guī)范要求
須完整準(zhǔn)確填寫封面上各個(gè)項(xiàng)目,并檢查三項(xiàng)評(píng)價(jià)表,指導(dǎo)教師、評(píng)閱人、答辯委員會(huì)評(píng)價(jià)表及評(píng)語,每份評(píng)語字?jǐn)?shù)不可少于100字;任務(wù)書上所有內(nèi)容要填寫完整、正確;設(shè)計(jì)圖紙采用計(jì)算機(jī)繪圖并打?。划厴I(yè)設(shè)計(jì)(論文)裝訂順序規(guī)范。
結(jié) 論
結(jié)論是理論分析和實(shí)驗(yàn)結(jié)果的邏輯發(fā)展,是整篇論文的歸宿。結(jié)論是在理論分析、試驗(yàn)結(jié)果的基礎(chǔ)上,經(jīng)過分析、推理、判斷、歸納的過程而形成的總觀點(diǎn)。結(jié)論的措詞必須嚴(yán)謹(jǐn),邏輯性必須嚴(yán)密,文字必須鮮明具體。如果不可能導(dǎo)出應(yīng)用的結(jié)論,也可以沒有結(jié)論,但需進(jìn)行必要的討論。
可以在結(jié)論或討論中提出建議、研究設(shè)想、儀器設(shè)備改進(jìn)意見、尚待解決的問題。
參考文獻(xiàn)
(參考文獻(xiàn)按在文中引用順序排序,作者如超過兩位時(shí)只列前兩位,其他人用“等”、英文作者用“et al”表示)
專著或文集類([序號(hào)] 作者.專著名.出版地:出版者,出版年.)
[1] 薛華成.管理信息系統(tǒng).北京:清華大學(xué)出版社,1993.
[2] 楊慶,欒茂田等.邊坡漸進(jìn)破壞可靠性分析及其應(yīng)用.第八屆土力學(xué)及巖土工程學(xué)術(shù)會(huì)議論文集.北京:萬國(guó)學(xué)術(shù)出版社,1999.
期刊類([序號(hào)] 作者.題(篇)名.刊名.出版年,卷號(hào)(或期號(hào)):起止頁.)
[3] 徐濱士,歐忠文等.納米表面工程.中國(guó)機(jī)械工程,2000,11(6):707-712.
[4] Kuehnlw M R, Peeken H, et al. The Toroidal Drive. Mechanical Engineering, 1981, 103 (2):32-39.
會(huì)議論文類([序號(hào)] 作者.篇名.會(huì)議名,會(huì)址,開會(huì)年:起止頁.)
[5] 惠夢(mèng)君,吳德海等.奧氏體—貝氏體球鐵的發(fā)展.全國(guó)鑄造學(xué)會(huì)奧氏體—貝氏體球鐵專業(yè)學(xué)術(shù)會(huì)議,武漢,1986:201-205.
學(xué)位論文類([序號(hào)] 作者.題(篇)名:(博(碩)士學(xué)位論文).授學(xué)位地:授學(xué)位單位,授學(xué)位年.)
[6] 金波.采用并聯(lián)型液壓系統(tǒng)的水輪機(jī)調(diào)速器控制系統(tǒng)研究:(博士學(xué)位論文).杭州:浙江大學(xué),1998.
專利文獻(xiàn)類([序號(hào)] 專利申請(qǐng)者.專利題名.專利國(guó)別:專利號(hào).出版日期.)
[7] 姜錫洲.一種溫?zé)嵬夥笏幹苽浞桨福袊?guó)專利:881056078.1983-08-12.
國(guó)際、國(guó)家標(biāo)準(zhǔn)類([序號(hào)] 標(biāo)準(zhǔn)代號(hào),標(biāo)準(zhǔn)名稱.出版地:出版者,出版年.)
[8] GB/T 16159—1996,漢語拼音正詞法基本規(guī)則.北京:中國(guó)標(biāo)準(zhǔn)出版社,1996.
報(bào)紙文章類([序號(hào)] 作者.文獻(xiàn)題名.報(bào)紙名,出版日期(版次).)
[10] 謝希德.創(chuàng)造學(xué)習(xí)的思路.人民日?qǐng)?bào),1998-12-25(10).
注意:請(qǐng)把文中所有藍(lán)色文字或替換或刪除,不要出現(xiàn)在畢業(yè)設(shè)計(jì)說明書或論文中。
附錄1: 封面樣例
Tianjin University of Technology and Education
畢業(yè)設(shè)計(jì)
專 業(yè): 機(jī)械制造工藝教育
班級(jí)學(xué)號(hào): 0303-01
學(xué)生姓名:
指導(dǎo)教師: ××× 教授
二OO七 年 六 月
天津工程師范學(xué)院本科生畢業(yè)設(shè)計(jì)
中文題目
English Title
專業(yè)班級(jí):××××××
學(xué)生姓名:×××
指導(dǎo)教師:××××××
系 別:××××××
2007年6月
ABSTRACT
Key words:
Key words:
摘 要
關(guān)鍵詞:
中文題目 學(xué)生姓名
論文封面 書脊 扉頁
圖一 論文封面 書脊 圖二 扉頁
致 謝
用簡(jiǎn)短文字對(duì)在本研究工作中提出建議和給予幫助的人員,如老師和同學(xué)以及其他人,應(yīng)在論文中做明確的說明并表示謝意。對(duì)導(dǎo)師的致謝要實(shí)事求是、誠(chéng)懇、真摯,切忌濫用浮夸庸俗之詞。
The roar developments of the modern industry not only give people many material benefits but also bring a series of social difficulties, such as environmental pollution and energy crisis that are taken into great consideration by all over the world people. Automobiles consume about half of the petrol of the world and at the same time they have been polluting our atmosphere seriously. At present, for auto engineers, the most important job is to design and develop more clean substitute fuel engines. We will solve the problems of environmental pollution and energy crisis strategically by using these engines.
The computer Simulation has developed gradually along with the development of the computer .The rapid progress of the computer software and hardware not only provide the computer simulation research powerful technological support ,but also accelerated the development of the computer simulation further . As a result, a good many models come into being .Among them, the Quasi-dimensional model becomes popular because its practicability and low cost.
In this paper, the emphasis is laid on the spark-ignited engine. A computer model for in-cylinder working process of spark-ignited engine is developed via using quasi-dimensional model. The model consists of a thermodynamic model, a heat transfer sub model ,a chemical equilibrium model and a two-zone combustion model. The model is anticipated to accurately predict performance of a LPG engine. Based on the model ,a relevant program is written by VB. In order to test the program, we did some experiments on a 4105LPG engine of Chaoyang Diesel Factory. The calculated results is relatively consistent with the experimental results. In the paper ,the changing pressure of 4105LPG engine during the cylinder-closed phase(with the exception of exchanging gas phase) under different rotate speed and different spark-ignited advanced angle conditions is calculated. The total produce of NO emission is also did. In addition, influence of different parameters to the performance of the engine analyzed, and the reason is pointed .In final, the characteristic of 4105LPG engine and that of original engine is compared. Based on the comparison, the feasibility of a diesel engine retrofitted to LPG engine is studied. The study results show that it is feasible to retrofit a diesel engine retrofitted to LPG engine.
In the design of a car the comfort of occupants is clearly of prime importance, and the basic functional of its suspension system is therefore to provide a flexible support for the vehicle which allows the occupants to ride conformability, isolated from road surface imperfections An additional and no less important requirement of the suspension system is that it should stabilize the vehicle under all conditions of driver handling, namely cornering, braking and accelerating. These two basic requirements in respect of vehicle ride and handling generally tend to conflict in practice, since very flexible or soft springing is indicated on the one hand and relatively hard springing on the other.
A significant step toward reducing this conflict was the proper application of independent front wheel suspension which followed chiefly from the research work done in the early 1930s by NMaurice Olley, an ex-Roils-Royce engineer then working for the Cadillac Motor Car Company in America. With an independent front wheel suspension system the steered wheels are located by entirely separate linkages rather than being of independent front suspension (IFS) has long been established practice for all conventional motor cars for the following reasons.
The more precisely controlled location of the front wheels afforded by using an independent linkage system in conjunction with a rigid vehicle structure permits them to have a greater range of Suspension movement. This in turn allows the use of much softer springs, which reduce the magnitude of impact loads transmitted by the front suspension to the car structure. Further-more, the springs themselves are generally no longer required to play any part in locating the wheels, so that leaf springs can be discarded in favor of other types of springs possessing very little internal friction and thereby prevent harshness of ride.
Better road holding
To some extent the springs can be made softer with an IFS system without reducing the roll resistance at the front end of the car, which otherwise could lead to over steer on corners as a result of the rear suspension then offering too much resistance to roll. With beam axle suspension the lateral Separation of its pair of semi-elliptic leaf springs is restricted to about one-half the wheel track dimension so as to leave sufficient clearance for the wheels to be steered. This narrow spring base compares unfavorably with that of an independent system where it is always equal to the wheel track irrespective of the lateral separation of the springs.
More accurate steering
An independent linkage is better able to ensure that each front wheel follows its prescribed geometrical path relative to the car structure and hence those parts of the steering linkage carried thereon. This can be difficult to achieve with a beam axle which is located solely by semi-elliptic leaf springs. For example, early attempts to increase their flexibility usually required the addition of an axle control linkage to prevent the axle from winding up on its springs and causing instability during braking.
Reducing steering joggles I
As compared with a beam axle system, an independent linkage can be arranged to reduce by about one-half the amount either front wheel tilts inwards when passing over an obstacle. This serves to lessen the gyroscopic forces acting on the road wheels, because in tilting inwards they also attempt to steer themselves inwards and this produces an unwanted reaction or joggle at the steering wheel. Furthermore, both wheels of a beam axle system are tilted in unison when either of them passes over an obstacle, a state of affairs that at worst can lead to a wobble or shimmy of the steered wheels.
Increased passenger space.
Last, but by no means least, the introduction of IFS made a direct contribution to improved passenger accommodation by having the power unit mounted further forward in the tar, an arrangement which removed the need to provide front end clearance for the moving center portion of the axle beam. It thus became practicable to reposition the rear seats from above the rear axle to a lower level within the wheelbase. Similarly, the rear-mounted fuel tank could then be moved forward, thereby increasing the capacity of the luggage boot. The linkages used in modern IFS systems generally fall into two basic categories: the unequal transverse links, or wishbone system; and the transverse link and strut, or MacPherson system.
Unequal transverse links IFS
This system, pioneered by General Motors of American the mid 1930s, is sometimes referred to as a wishbone system, because in plan view the front suspension links of their Buick models were originally of this form. With this type of IFS, each wheel: is guided over obstacles by a short upper and a long l!0wer link, the inner ends of these links being pivoted from the car structure and their outer ends now ball jointed to a stub axle carrier or yoke.
As viewed from the front, the relative lengths and angles of these links are chosen so as to offer the following basic compromise:
Independent rear suspension (IRS)
Whereas a few car manufacturers continue to mount the rear wheals on a sprung live axle, many others have long since adopted various forms of independent rear suspension (usually abbreviated to IRS). It first became widely used by German and Middle European manufacturers during the 1930s, notably in the designs of Drs Ferdinand Porsche and Hans Ledwinka, but this development did not really gain popularity elsewhere until some thirty years later.
The chief benefits to be expected from using a modern IRS system are generally concerned with the inter-related qualities, of ride, handling and, in the case of rear-wheel-drive cars reaction. Ride comfort in particular should benefit from the reduction by about one-half in the unsprung mass of the suspension mechanism, resulting from the final drive assembly being mounted on the vehicle structure. Also an increase in useful space within the body rear portion is implicit with IRS, since the propeller shaft and final drive assembly do not rise and fall in sympathy with the suspension movements of the rear, wheels.
The improvement in traction to be expected with independently sprung and driven rear wheels deserves a few words of explanation. Mention was made in Section 19.4 of the antics performed by the live axle of a Hotchkiss drive system during acceleration and braking. Taking matters a little further, we find that during acceleration the axle casing rocks on its springs not only in opposition to crown wheel torque, but also to a lesser extent (as related to the final drive gear ratio) in sympathy with pinion torque. In other words, the tendency during acceleration is to press one rear wheel harder against the ground and to lift the other one off it. This effect, combined with the one mentioned previously, can cause the axle and wheels to writhe about a conical path and generate an unstable handling condition known as axle tramp. Although this state of affairs may to some extent be alleviated by additional means of axle control, as earlier described, such misbehavior is absent from IRS systems. The reason for this is, of course, that the final drive is divorced from the road wheel mountings and is attached to the vehicle structure; the drive to the wheels being transmitted through universally jointed drive shafts.
Comparing different types of IRS
Although we are required only to identify the various systems by their basic geometric layout, a few brief notes on their general characteristics may prove useful to explain their current popularity or otherwise. The systems may conveniently be classified into four types as in the following sections.
Swing axle: pure and diagonal
A pure swing axle system was once widely favored by Continental manufacturers, especially for rear-engined cars where its use proved mechanically expedient. Although body roll tends to be less with this type of IRS, hard cornering can produce outward lean of the outer wheel and a smaller inward lean of the inner wheel, the result being that the rear end of the car is lifted. The sudden onset of this jacking effect can lead to an unstable over steering condition. For normal ride motions of the car there is pronounced tilting of the wheels, with accompanying changes in wheel track as they rise and fall. These undesirable effects can, to some extent, be reduced by using a diagonal swing axle. This system involves less tilting of the wheels and also causes them to steer inwards or toe-in slightly as they rise and fall, which counteracts the over steering tendency.
Trailing arm: pure and semi
The trailing arm system has long been favored for the relatively lightly laden rear wheels of front-wheel-drive cars. In its pure form the arms pivot about an axis that lies parallel with the ground and normal to the centerline of the car. Although the wheels can rise and fall vertically during normal rifle motions of the car, they are necessarily tilted to the same angle as the body with cornering roll, which tends to be greater with this type of IRS. This leaning away from the curve the wheels has the disadvantage of reducing their cornering power. In the case of rear-wheel-driven cars, a departure is usually made from the pure system to one where the pivot axis of each arm is moderately angled in plan view and known as the semi-trailing arm.The purpose of this modified geometry is to maintain more nearly upright during cornering and also to cause them to steer inwards or toe-in slightly as they rise and fall, thereby contributing to a stable under steering condition.
Unequal transverse links
This system of IRS is comparatively little used, because of its potentially greater intrusion into valuable rear body space. On the credit side, a better compromise with respect to suspension geometry can fairly readily be obtained, a particular advantage being that the heavily loaded outer wheel can be maintained more nearly upright in the presence of body roll during cornering. By allowing each drive shaft to perform a dual role and serve also as the upper link, as so ably demonstrated by the Jaguar Company, the unequal transverse links system of IRS may be simplified, its unsprung mass lessened and its vertical space requirements reduced.
Also sometimes referred to as a Chapman strut, so named after the, Lotus car designer who first applied the MacPherson transverse link and strut principle to rear wheel suspension (, this type of IRS hassince become widely used for the non-driven rear wheels of front-wheel-drive cars. For the lateral and longitudinal location of the non-steered rear wheels, the transverse link may pivot about an axis parallel to the centerline of the car. The link may comprise either a substantial wishbone arm, a track control arm that is located fore-and-aft by a trailing link, or a similarly located parallelogram linkage that better maintains wheel alignment with optimum compliance as developed by Mazda. Alternatively, the transverse link may be skewed in the manner of a diagonal swing axle, again with the purpose of correcting for any over steering tendency that may be present, because the geometry of the transverse link and strut is not quite as good as the unequal transverse links system of IRS.
TYPES OF SUSPENSION SPRING Basic requirements
When the road wheels rise and fall over surface irregularities, the springs momentarily act as energy storage devices and thereby greatly reduce the magnitude of loading transmitted by the suspension system to the vehicle structure. Springs that utilize the elastic properties of metal rubber and air are variously employed in motor vehicle suspension systems, the actual choice made being determined largely by versatility, in application and best economy of material in terms of energy storage per unit volume.
At one time, the conventional multileaf spring was built up from a large number of narrow, thin leaves, which in rubbing against each other with flexing of the spring exerted an appreciable friction damping effect, on suspension movements of the wheels. For private cars at least, it is no longer considered desirable that the suspension springs should also act as friction shock dampers, so that leaf springs are now designed with fewer leaves of relatively greater width and thickness.
Furthermore, the leaves are separated at their ends by anti-friction thrust pads such as recessed plastics buttons (Figtire.22.11).A series of retaining clips positioned along the length of the spring has the twofold purpose of preventing the leaves from separating during rebound travel of the spring and ensuring that the sideways loads imposed on tile spring are not borne solely by the uppermost or master leaf.
Another established feature of multileaf spring construction is that of providing nip between the leaves by forming the leaves below the master leaf with successively reducing radii of curvature . This gives a beneficial stress; reduction for the master leaf, because when the leaves are clamped together it is subject to a bending preload opposite in direction to that caused by the vehicle load.
In more recent years advances made in spring manufacturing technology have resulted in the limited use of single-leaf springs. This type of construction is similar in principle to the previously mentioned simple plate spring, but it avoids the excessive width disadvantage by having its single leaf varying in both width and thickness. Advantages generally claimed for this simplified form of Construction are the useful reduction in unsprung weight and the elimination of interleaf friction, both of which contribute to improved ride comfort of the vehicle.
This type of spring represents a compromise between the conventional multileaf and single-leaf springs, and it can be described in effect as a stacked single-leaf spring. It comprises several full-length leaves of constant width but of tapering thickness towards their ends. At their thick middle portion the leaves are separated by interleaf liners and contact one another only towards their ends. Since the tapered-leaf spring offers advantages similar to those of the single-leaf spring, but: with a much greater load-carrying capacity, it has been used to advantage in some commercial vehicles where it gives better cushioning for both cargo and driver.
Whichever type of leaf spring is used, its mounting must locate it positively with respect to both the axle and the vehicle structure, as follows.
The center portion of the spring is attached to a seating or saddle formed towards either end 6f the axle. For installation purposes, the leaves are generally held together by a center bolt the head :of which further serves as a dowel for locating the spring relative to its seating: To avoid the stress-raising effect of a hole through the leaves, the usual center bolt may be dispensed with in some heavy-duty applications arid replaced by dimples or cups pressed into successive leaves, with a corresponding depression being provided n the axle seating. Final attachment of the spring to the axle is effected through the medium of either U-bolts or normal bolts and nuts, together with a clamping plate if required. For the driven rear axles of cars it has long been established practice for the spring-to-axle clamping arrangements to be rubber lined. This not only reduces the transmission of road nose through the spring mounting, but also minimizes stress concentration on the leaves where they emerge from the clamp.
The flexing of a semi-elliptic leaf spring is such that its curvature, and hence its effective length, change constantly with suspension movements of the axle. To locate the axle positively, and at the same time accommodate these lengthwise movements of the spring, the latter is provided with fixed and free end pivots. The fixed end of the master leaf, usually the front end, is provided with a rolled eye embracing a suitable pivot connection on the vehicle structure.
For cars the pivot, or spring pin, clamps the inner sleeve of a rubber bushing pressed into the spring eye, while for commercial vehicles lubricated metal bushings are generally required. The free end of the master leaf is provided with either a similar rolled eye or a plain end. In the former case, the roiled eye and its bushing connect by means of a shackle pin t6 a shackle link, which in turn is hinged from :the vehicle structure .
For commercial vehicles this usually requires a separate shackle bracket fixed to the chassis frame The shackle link bushings are complementary to those used at the fixed pivot of the spring. A plain end mounting for the master leaf is used in conjunction with a slipper-type bracket, an firrangement now conined to commercial vehicles. Flexing of the spring thus produces metal-to-metal sliding Contact of its plain end against the curved underside Of the slipper bracket.
Helical compression or coil springs are-probably now the most widely used type of suspension spring for motor cars. in comparison with a leaf spring, the coil spring can store more than twice the amount of energy per unit volume of material, and it possesses minimal internal friction.However, the vertical space requirements of a coil spring are greater and its inherently low resistance to buckling is such,’ttihi it can function as a spring medium only when used in conjunction with a separate wheel
收藏