喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請(qǐng)放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:1064457796 或 1304139763】
黑龍江工程學(xué)院本科生畢業(yè)設(shè)計(jì)
摘 要
近年來,汽車工業(yè)有了突飛猛進(jìn)的發(fā)展,由于全球高新技術(shù)的日新月異以及人們對(duì)環(huán)境保護(hù)與節(jié)約能源的更加關(guān)注,各種油耗檢測(cè)儀器就應(yīng)運(yùn)而生,但是其中大部分為解體式油耗檢測(cè)技術(shù)下的燃油消耗檢測(cè)儀器,主要為容積法和質(zhì)量法。由于此種檢測(cè)設(shè)備的結(jié)構(gòu)復(fù)雜,特別是在我國(guó)頒布的第一個(gè)關(guān)于乘用車燃料消耗量限制值的標(biāo)準(zhǔn),使得汽車油耗檢測(cè)的需求更加迫切,不解體油耗分析系統(tǒng)的開發(fā)研究是交通部重大科技攻關(guān)項(xiàng)目,此項(xiàng)目包括從方案確定、硬件設(shè)計(jì)、信號(hào)處理到軟件編程等很多內(nèi)容,本論文的目的就是設(shè)計(jì)一套不解體燃油消耗檢測(cè)儀器--基于超聲波技術(shù)的汽車油耗檢測(cè)儀器。
基于超聲波技術(shù)下的燃油消耗檢測(cè)儀器是一種利用超聲波流量計(jì)技術(shù)測(cè)量燃油流量并通過計(jì)算電路得到燃油消耗情況的一種新型的燃油消耗檢測(cè)儀器。
超聲波流量計(jì)具有不擾亂流場(chǎng)、無可動(dòng)部件、無壓力損失、測(cè)量精度高、性能穩(wěn)定可靠、測(cè)量范圍寬等特點(diǎn),廣泛應(yīng)用于液體和氣體的計(jì)量。
關(guān)鍵詞:超聲波換能器、流量、模塊、環(huán)鳴法、FPGA、串行通訊
ABSTRACT
In recent years, Automobile industry has been developing by leaps and bounds, due to the global high-tech is changing and people to the environmental protection and energy saving more attention, all kinds of fuel consumption testing instrument is made, but mostly disintegrated type of fuel detection technology fuel consumption testing instrument, mainly for volumetric method and quality standard. Because this test equipment of structure is complex, especially in the first China promulgated on passenger cars fuel consumption of standard, make cars limit consumption detection more urgent demand, not the disintegration of fuel consumption analysis system development research ministry of science research project is significant. The project including from plan, hardware design, signal processing to software programming and many other topics, the aim of this paper is to design a set of non-dismatiement testing instruments fuel consumption based on ultrasonic technology -- the fuel consumption testing instruments.
Based on the fuel consumption under ultrasonic technology testing instrument is a use of ultrasonic flowmeter measurement fuel flow and technology through calculation of fuel consumption circuit get a new type of fuel consumption testing instruments.
Ultrasonic flowmeter is not disturbed flow field, no moving parts, without pressure loss, high accuracy, stable and reliable performance, wide measuring range and other characteristics, widely used in liquid and gas measurement
Keywords: Ultrasonic Transducer, Flow, Module, Ring Sound Method, The FPGA, Serial expert
II
目 錄
摘要 I
Abstract II
第1章 緒論 1
1.1燃油經(jīng)濟(jì)性的概念和意義 1
1.2汽車油耗檢測(cè)的發(fā)展概況 2
1.3國(guó)內(nèi)外汽車油耗儀檢測(cè)研究現(xiàn)狀 2
1.4課題研究背景及意義 3
1.5本設(shè)計(jì)主要研究?jī)?nèi)容 6
第2章 超聲波式燃油消耗檢測(cè)儀的原理及方案的確定 8
2.1汽車油耗儀器的測(cè)量方法與分類 8
2.1.1直接測(cè)量法 8
2.1.2間接測(cè)量法 10
2.2超聲波流量計(jì)發(fā)展歷程與研究現(xiàn)狀 10
2.2.1超聲波測(cè)量技術(shù)發(fā)展概況 10
2.2.2超聲波流量計(jì)國(guó)內(nèi)外研究現(xiàn)狀 11
2.3管道流量測(cè)量的理論基礎(chǔ) 13
2.3.1流量的基本概念 13
2.3.2管道內(nèi)流體理論 14
2.3.3流速補(bǔ)償系數(shù)對(duì)流速公式的修正 17
2.4超聲波流量測(cè)量的原理 18
2.4.1時(shí)差法 18
2.4.2多普勒法 20
2.4.3相關(guān)法 20
2.5超聲波測(cè)量方案的確定 21
2.6本章小結(jié) 22
第3章 超聲波油耗檢測(cè)儀器硬件電路的設(shè)計(jì) 23
3.1 系統(tǒng)硬件電路的總體設(shè)計(jì) 23
3.1.1 系統(tǒng)硬件的結(jié)構(gòu)設(shè)計(jì) 23
3.1.2系統(tǒng)工作原理及流程 24
3.2系統(tǒng)硬件電路的模塊設(shè)計(jì) 25
3.2.1微控制器模塊 25
3.2.2看門狗電路的初設(shè)計(jì) 26
3.2.3超聲波發(fā)射模塊 27
3.2.4超聲波接收及后續(xù)處理模塊 28
3.2.4發(fā)射/接收切換電路 34
3.2.5實(shí)時(shí)時(shí)鐘、看門狗及數(shù)據(jù)存儲(chǔ)模塊 34
3.2.6液晶顯示模塊 36
3.2.7 鍵盤模塊 37
3.2.8微型打印機(jī)的選擇 40
3.2.9 通訊接口的選擇 41
3.2.10電源模塊 42
3.2.11超聲波換能器的選擇 43
3.3 本章小結(jié) 44
第4章 智能型汽車油耗儀機(jī)械部分設(shè)計(jì) 45
4.1 殼體材料的選擇 45
4.2 外型尺寸的確定 45
4.3 控制面板的設(shè)計(jì) 46
4.4 數(shù)據(jù)線接口的設(shè)計(jì) 47
4.5 油耗儀器內(nèi)部結(jié)構(gòu)設(shè)計(jì) 48
4.6 超聲波換能器裝夾結(jié)構(gòu)設(shè)計(jì) 49
4.7 本章小結(jié) 50
第5章 FPGA的數(shù)字系統(tǒng)設(shè)計(jì) 51
5.1 FPGA的芯片選擇 51
5.2 FPGA內(nèi)部模塊設(shè)計(jì) 51
5.2.1高速計(jì)數(shù)器模塊 52
5.2.2時(shí)鐘信號(hào)模塊 54
5.2.3邏輯控制模塊 54
5.3 FPGA的接口電路設(shè)計(jì) 54
5.4 本章小結(jié) 55
第6章 軟件系統(tǒng)的設(shè)計(jì) 56
6.1系統(tǒng)軟件整體結(jié)構(gòu)及功能 56
6.2主要功能模塊的設(shè)計(jì) 57
6.2.1系統(tǒng)主程序模塊 57
6.2.2中斷服務(wù)程序模塊 57
6.2.3計(jì)算模塊的程序設(shè)計(jì) 61
6.2.4數(shù)據(jù)存儲(chǔ)模塊 62
6.2.5顯示模塊 63
6.2.6按鍵的去抖功能的程序流程圖設(shè)計(jì) 64
6.3 本章小結(jié) 65
第7章 試驗(yàn)研究及誤差分析 66
7.1 試驗(yàn)的目的和意義 66
7.2零流量下的相關(guān)實(shí)驗(yàn) 66
7.2.1換能器收發(fā)信號(hào)波形實(shí)驗(yàn) 66
7.2.2過零檢測(cè) 67
7.2.3零速檢測(cè) 67
7.3實(shí)時(shí)流量實(shí)驗(yàn) 68
7.3.1實(shí)驗(yàn)方法 68
7.4誤差分析 71
7.4.1管道直徑的影響 72
7.4.2固有延遲的影響 72
7.4.3測(cè)量時(shí)差的影響 72
7.4.4參數(shù)的影響 72
7.4.5流量修正系數(shù)的影響 73
7.5溫度和壓力的修正 75
7.6本章小結(jié) 76
結(jié)論 77
參考文獻(xiàn) 78
致謝 81
黑龍江工程學(xué)院本科生畢業(yè)設(shè)計(jì)
第1章 緒 論
1.1燃油經(jīng)濟(jì)性的概念和意義
在當(dāng)前和今后相當(dāng)長(zhǎng)的一段時(shí)期,汽車燃料仍將以石油產(chǎn)品為主。例如:西歐工業(yè)發(fā)達(dá)國(guó)家交通運(yùn)輸消耗石油產(chǎn)品的34%-45%;美國(guó)交通運(yùn)輸部門消耗國(guó)內(nèi)石油產(chǎn)品的52%。2002年,我國(guó)原油產(chǎn)量為1.6億噸,進(jìn)口石油則超過7200萬噸,耗費(fèi)200多億美元。汽車燃油消耗量分別占我國(guó)汽油和柴油產(chǎn)量的87%和21%。據(jù)統(tǒng)計(jì)2010年我國(guó)石油進(jìn)口高達(dá)1.6億噸。
此外,由于汽車運(yùn)輸?shù)挠秃恼计囘\(yùn)輸成本的20%以上。節(jié)約燃料就意味著汽車運(yùn)輸成本的降低,經(jīng)濟(jì)效益的提高。顯而易見,研究汽車燃料經(jīng)濟(jì)性對(duì)汽車節(jié)能的意義重大。例如:同1970年相比,1993年美國(guó)汽車平均油耗下降了33%。為此世界各國(guó)都把降低汽車能耗作為一項(xiàng)基本國(guó)策,并成為汽車制造和交通運(yùn)輸領(lǐng)域的重要課題。
在保證動(dòng)力性的條件下,汽車以盡量小的燃油消耗量經(jīng)濟(jì)行駛的能力,稱為汽車的燃油經(jīng)濟(jì)性.
提高汽車的燃油經(jīng)濟(jì)性,從汽車的設(shè)計(jì)和生產(chǎn)上來講,改進(jìn)發(fā)動(dòng)機(jī)結(jié)構(gòu)(如發(fā)動(dòng)機(jī)的稀燃技術(shù))是一個(gè)趨勢(shì),從而改善燃油的燃燒狀況,提高發(fā)動(dòng)機(jī)的熱效率,來減少汽車的尾氣對(duì)環(huán)境的污染。并且,汽車燃油經(jīng)濟(jì)性與汽車的底盤和發(fā)動(dòng)機(jī)的結(jié)構(gòu)和技術(shù)狀況密切聯(lián)系,所以汽車的燃油經(jīng)濟(jì)性可以作為汽車技術(shù)性能的綜合考查指標(biāo)。
提高汽車的燃油經(jīng)濟(jì)性,即改進(jìn)燃油的利用率,既可節(jié)約石油資源,又可降低我國(guó)對(duì)石油進(jìn)口的依賴度;既降低運(yùn)輸成本,又可提高運(yùn)輸效益;并且可減少環(huán)境排放尾氣污染量,從而改善環(huán)境質(zhì)量。世界各國(guó)對(duì)提高汽車的燃油經(jīng)濟(jì)性都有自己的方法。在2002年年底,美國(guó)布什政府出臺(tái)提高輕型車燃油經(jīng)濟(jì)標(biāo)準(zhǔn)的相關(guān)法規(guī),它們的第一步是從2002年的20.7MPG(miles per gallon,英里/加侖)提高到2007年的22.2 MPG,即等同于百公里油耗從11.36L/100km減少至10.60 L/100km。根據(jù)美國(guó)交通安全部的統(tǒng)計(jì)數(shù)據(jù),此舉意味著到2007年,美國(guó)的汽油消耗量可以減少25億加侖(1加侖=0.003785411784立方米)相當(dāng)于9 463 529 460升。在1999年3月,日本在“能源合理消費(fèi)法”中已經(jīng)第二次頒布關(guān)于改善機(jī)動(dòng)車性能的公告,在此公告中,分別規(guī)定了總質(zhì)量小于2.5 t的載貨汽車和乘用車的油耗限定值,要求和1995年相比,2010年汽油車油耗限定值至少要降低20%。德國(guó)要求在汽車制造廠生產(chǎn)的汽車的平均燃油消耗量1980年的為9.25L/100km,1990年的為7.96L/100km, 2005年比1990年降低1/4。
綜上可見,較好的燃油經(jīng)濟(jì)性可以減少汽車的油耗,從而降低汽車的使用費(fèi)用;進(jìn)而降低國(guó)家總的石油消耗量,緩解國(guó)家能源危機(jī)。良好的燃油經(jīng)濟(jì)性還可以降低汽車CO、CO2、HC化合物及顆粒物的排放,有利于生活環(huán)境的改善。
1.2汽車油耗檢測(cè)的發(fā)展概況
上世紀(jì)七十年代中期以前,世界各國(guó)還沒有強(qiáng)制執(zhí)行汽車油耗法規(guī)或標(biāo)準(zhǔn)。1973年中東石油危機(jī)后,世界石油價(jià)格飛漲。此時(shí),人們認(rèn)識(shí)到石油資源的逐漸枯竭,也威脅到人類長(zhǎng)遠(yuǎn)的正常生活。許多工業(yè)發(fā)達(dá)國(guó)家同時(shí)也是石油主要進(jìn)口國(guó),他們進(jìn)口的石油有相當(dāng)大的部分消耗在汽車上,從能源的安全性考慮,如果不控制汽車的油耗,他們的經(jīng)濟(jì)發(fā)展可能會(huì)受控于石油出口國(guó)。于是1975年美國(guó)政府首先頒布了能源保護(hù)法和能源政策,并制訂了控制汽車燃油消耗量的法規(guī),成為世界上第一部強(qiáng)制執(zhí)行的汽車油耗法規(guī)。
上世紀(jì)八十年代以來,世界各國(guó)開始關(guān)注溫室效應(yīng)引起的全球范圍的氣候變暖。二氧化碳()是造成溫室效應(yīng)的主要因素,各種溫室氣體中約分擔(dān)了50%的責(zé)任,工業(yè)發(fā)達(dá)國(guó)家汽車排放的約占該國(guó)總排放量的30%-40%。由于汽車的燃油消耗量與的排放量有直接關(guān)系。于是,油耗法規(guī)的意義不單是能源問題,還關(guān)系到環(huán)境問題。
顯而易見,研究汽車燃料經(jīng)濟(jì)性對(duì)汽車節(jié)能、環(huán)境保護(hù)的意義重大。為此,世界各國(guó)都把降低汽車能耗作為一項(xiàng)基本國(guó)策,并成為汽車制造和交通運(yùn)輸領(lǐng)域的重要課題。我國(guó)汽車行業(yè)從八十年代初就開始了制定汽車油耗標(biāo)準(zhǔn)的工作,制定了測(cè)各類車輛燃油消耗量的統(tǒng)一試驗(yàn)方法標(biāo)準(zhǔn),并頒布了各類車輛的行業(yè)性燃油耗量限值標(biāo)準(zhǔn),如:
(1) GB/T 12545-1990《汽車燃料消耗量試驗(yàn)方法》;
(2) JB 3809-1984《載貨汽車燃料消耗量限值》;
(3) JB 3806-1984《重型載貨汽車燃料消耗量限值》;
(4) GB/T 12545.1-2001《乘用車燃料消耗量試驗(yàn)方法》;
由于這些都是行業(yè)性或推薦性的標(biāo)準(zhǔn),加上油耗檢測(cè)起來相對(duì)麻煩,所以國(guó)內(nèi)多數(shù)檢測(cè)站沒有油耗檢測(cè)項(xiàng)目或者是有而不用,所以把油耗檢測(cè)真正納入檢測(cè)項(xiàng)目中來也是我國(guó)有待解決的問題。
1.3國(guó)內(nèi)外汽車油耗儀檢測(cè)研究現(xiàn)狀
燃油消耗量是評(píng)價(jià)汽油機(jī)經(jīng)濟(jì)性的重要指標(biāo),是汽車發(fā)動(dòng)機(jī)的重要測(cè)量參數(shù)之一。因此,燃油消耗量的測(cè)量是汽車性能試驗(yàn)的重要組成部分,其測(cè)量精度直接影響汽車實(shí)際性能指標(biāo)、各項(xiàng)技術(shù)參數(shù)確定和主要附件的選配及調(diào)整等。目前,發(fā)動(dòng)機(jī)臺(tái)架試驗(yàn)多屬于穩(wěn)態(tài)工況,仍沿用傳統(tǒng)的質(zhì)量法或體積法測(cè)量發(fā)動(dòng)機(jī)燃油消耗量。隨著汽車技術(shù)飛速發(fā)展,對(duì)其測(cè)試的手段也應(yīng)同步發(fā)展。
目前的油耗儀多為體積式的,日本小野公司的FP-214型活塞式流量傳感器,最低采樣時(shí)間為0.1s,最小油量分辨率為lmL,傳感器量程為0. 3~120L/h。渦輪流量?jī)x具有瞬時(shí)測(cè)量和累計(jì)功能,得到廣泛應(yīng)用,可測(cè)量0.05 ~1200L/min的液體流量,在標(biāo)定條件下,精度可達(dá)0.5%,響應(yīng)時(shí)間2-10ms。中小功率汽油機(jī)燃油流量小,一般在10-3000mL/min,超出渦流流量計(jì)下限,為此國(guó)內(nèi)研制出不同大小的渦輪以滿足汽油機(jī)小流量測(cè)量的需要。以上兩種流量?jī)x均用于汽車道路試驗(yàn),只能測(cè)量體積流量。美國(guó)Pierburg儀器公司的流量計(jì)為渦輪流量?jī)x的改進(jìn)型,流量范圍可從1 L/h起,響應(yīng)時(shí)間為200ms精度可達(dá)士0.1%。奧地利的AVL公司研制的臺(tái)架試驗(yàn)中發(fā)動(dòng)機(jī)燃油耗的精確測(cè)量?jī)x,在油量25時(shí)精度較高,臺(tái)架試驗(yàn)測(cè)量范圍為0~150kg/h,盡管該油耗儀可進(jìn)行動(dòng)態(tài)測(cè)試,但由于仍是靜態(tài)燃油測(cè)量秤的改進(jìn),動(dòng)態(tài)響應(yīng)時(shí)間大于200ms。
國(guó)內(nèi)有關(guān)燃油消耗測(cè)量設(shè)備的報(bào)道較少,只有一些專利。而應(yīng)用軟件與底盤測(cè)功機(jī)結(jié)合進(jìn)行油耗測(cè)量的系統(tǒng)更加少,目前底盤測(cè)功機(jī)上應(yīng)用的軟件都是一些串口調(diào)試軟件,通過與油耗儀結(jié)合,接受油耗儀的數(shù)字信號(hào),通過計(jì)算機(jī)分析處理,得出油耗結(jié)果?,F(xiàn)在,國(guó)內(nèi)油耗測(cè)試市場(chǎng)還是主要沿用傳統(tǒng)的油耗儀測(cè)試方法和臺(tái)架試驗(yàn)方法。
1.4課題研究背景及意義
由于燃油緊缺對(duì)汽車油耗這一參數(shù)提出了很高的要求,因此油耗儀作為其檢測(cè)設(shè)備也應(yīng)具有相應(yīng)的精度?,F(xiàn)有的油耗儀在出廠前通常只通過精密天平或者量筒對(duì)其進(jìn)行標(biāo)定。長(zhǎng)期以來,油耗儀在生產(chǎn)和使用過程中缺乏檢驗(yàn)裝置進(jìn)行全面有效檢定,導(dǎo)致油耗儀失準(zhǔn),這是現(xiàn)有油耗儀質(zhì)量失控的主要原因。
1、我國(guó)經(jīng)濟(jì)持續(xù)快速發(fā)展,對(duì)石油資源的需求激增,能源供需矛盾日益突出
據(jù)公安部交管局發(fā)布的數(shù)據(jù)(按上牌數(shù)來計(jì)算,這是最權(quán)威的數(shù)據(jù)了)顯示,我國(guó)機(jī)動(dòng)車保有量已達(dá)1.99億輛,其中汽車8500多萬輛,中國(guó)目前就汽車保有量已經(jīng)超過7500萬輛左右的日本,僅次于擁有約2.5億輛的美國(guó),成為全球汽車保有量第二大國(guó)。而且我國(guó)還以每年新增機(jī)動(dòng)車2000多萬輛的數(shù)量在增加。2002年中國(guó)有將近2050萬輛車,當(dāng)時(shí)中國(guó)每天大約消耗540萬桶石油。而現(xiàn)在我們到底每天需要的石油消耗。根據(jù)國(guó)際能源組織的評(píng)估:僅中國(guó)自己就需要世界石油需求增長(zhǎng)的40%,中國(guó)的能源消費(fèi)占全球的10%,美國(guó)能源消費(fèi)是中國(guó)的兩倍,因此中國(guó)石油的消費(fèi)將增長(zhǎng)7.6%,每天達(dá)920萬桶。到2015年中國(guó)預(yù)計(jì)將每天消費(fèi)石油達(dá)到1160萬桶。
由汽車消耗的燃料占我國(guó)燃料消耗總量的40%左右。據(jù)預(yù)測(cè)到2020年車用燃油消耗為3.05億噸,換算成原油將超過5億噸,車用燃油成為我國(guó)新增石油消耗的主體。以中國(guó)的石油儲(chǔ)備量和2008年中國(guó)石油靜態(tài)消費(fèi)量計(jì)算,我國(guó)的石油儲(chǔ)備再過10年將全部耗盡。如果想將之延長(zhǎng)到20年,則50%以上的車輛必須停止行駛。目前,包括歐盟、美國(guó)、日本、韓國(guó)等在內(nèi)的很多國(guó)家和地區(qū)都已經(jīng)根據(jù)各自國(guó)情實(shí)施了不同形式的汽車燃料消耗量標(biāo)示制度,作為控制汽車二氧化碳排放和油耗的支柱措施之一。
由于經(jīng)濟(jì)的飛速發(fā)展和機(jī)動(dòng)車保有量急劇膨脹所引起的石油危機(jī)將在所難免,為此我國(guó)加快汽車節(jié)能管理體系的建立和完善。陸續(xù)出臺(tái)了相關(guān)標(biāo)準(zhǔn):
《輕型汽車燃油消耗量試驗(yàn)方法》于2003年出臺(tái),解決了制造商在標(biāo)示汽車油耗值時(shí)的隨意性,必須按照統(tǒng)一的試驗(yàn)方法得到的數(shù)值來標(biāo)示。
《乘用車燃料消耗量限值》GB19578-2004于2005年7月1日實(shí)施。我國(guó)首次按車輛重量分組確定不同汽車應(yīng)該達(dá)到的燃料消耗量,實(shí)施后汽車廠商要通過產(chǎn)品文件和網(wǎng)絡(luò)等途徑向消費(fèi)者公示生產(chǎn)車型的燃料消耗量;對(duì)于新認(rèn)證車:第一階段的執(zhí)行日期為2005年7月1日,第二階段的執(zhí)行日期為2008年1月1日;對(duì)于在生產(chǎn)車:第一階段的執(zhí)行日期為2006年7月1日,第二階段的執(zhí)行日期為2009年1月1日。從2012年開始實(shí)施第3階段,將把車型燃油消耗量作為評(píng)價(jià)指標(biāo),從而取代原先按單車限制的評(píng)價(jià)方法。第3階段乘用車燃油消耗量限值標(biāo)準(zhǔn)將不再針對(duì)單車采用限值的燃油消耗量評(píng)價(jià)方法,而是從技術(shù)可實(shí)現(xiàn)的角度上,以整車裝備質(zhì)量為特征參數(shù),為各個(gè)不同的質(zhì)量段分別設(shè)定車型燃油消耗量目標(biāo)值。第3階段乘用車燃油消耗量限值標(biāo)準(zhǔn)的目標(biāo)是使我國(guó)乘用車燃油消耗量平均水平在2006年的基礎(chǔ)上下降15%左右,到2015年達(dá)到7L/100km的目標(biāo)。
《輕型商用車燃料消耗量限值》(GB20997-2007)為我國(guó)的輕型商用車設(shè)定了兩個(gè)階段的燃油消耗量限值:自2008年2月1日起,新認(rèn)證基本型車及其變型車應(yīng)符合第二階段限值要求;自2009年1月1日起,在2008年2月1日前認(rèn)證車型的在生產(chǎn)車及其變型車應(yīng)符合第一階段限值要求;自2011年1月1日起,適用于本標(biāo)準(zhǔn)的所有車輛應(yīng)符合第二階段限值要求。第二階段目標(biāo)實(shí)現(xiàn)后,我國(guó)輕型商用車的平均燃油消耗量可望減少10%~15%。
《低速貨車燃料消耗量限值及測(cè)量方法》(GB21378-2008)于6月1 日起實(shí)施。這項(xiàng)標(biāo)準(zhǔn)是我國(guó)第一項(xiàng)限制低速貨車燃料消耗量的強(qiáng)制性國(guó)家標(biāo)準(zhǔn)。低速貨車是指最高設(shè)計(jì)時(shí)速不大于每小時(shí)70公里,最大設(shè)計(jì)總質(zhì)量不大于4500千克的貨運(yùn)車。
《營(yíng)運(yùn)客車燃料消耗量限值及測(cè)量方法》JT 711—2008規(guī)定營(yíng)運(yùn)汽油客車燃料消耗量限值在柴油客車燃料消耗量限值的基礎(chǔ)上相應(yīng)增加15%。新投入的營(yíng)運(yùn)客車,2008年9月1日起執(zhí)行第一階段限值;2010年1月1日起執(zhí)行第二階段限值。
《輕型汽車燃料消耗量標(biāo)示管理規(guī)定》規(guī)定從2010年1月1日起,所有最大設(shè)計(jì)總質(zhì)量在3500kg以下的乘用車和輕型商用車在銷售時(shí)都必須粘貼《汽車燃料消耗量標(biāo)識(shí)》并標(biāo)注由國(guó)家指定檢測(cè)機(jī)構(gòu)按照統(tǒng)一的國(guó)家標(biāo)準(zhǔn)測(cè)定的市區(qū)、市郊、綜合三種工況的燃料消耗量;消費(fèi)者可以根據(jù)購車后的預(yù)期使用情況參照相應(yīng)的燃料消耗量選擇車輛。
2、油價(jià)不斷上漲,人們更加關(guān)注汽車油耗,廠家公布的油耗與實(shí)際差距很大
石油在1998年最低點(diǎn)每桶不足10美元到2008年突破140美元每桶?,F(xiàn)在每桶石油價(jià)格是105美元,而我們中國(guó)每天需要920萬桶石油。我們每天就石油一項(xiàng)每天需要96600萬美元。雖然我們自己國(guó)家開采石油可供應(yīng)一半市場(chǎng)需求。那我們國(guó)家每天也在石油這一項(xiàng)需要支出外匯48300萬美元。而2010年我國(guó)新增2000萬輛新車。這些車都會(huì)增加我們多少石油消耗?換而言之是2010年我們需要使用比2009年更多的外匯購買石油!我們的機(jī)動(dòng)車保有量,隨著這些年的經(jīng)濟(jì)發(fā)展,飛快的增長(zhǎng)。所以經(jīng)濟(jì)、節(jié)油型汽車就是目前眾多汽車廠家研究的對(duì)象。而許多汽車廠商也開始推行自己的汽車百公里油耗。
但是汽車廠商宣傳的百公里油耗,是在理想狀態(tài)下測(cè)出的最小油耗,以60km/h等速或90km/h等速或45km/h等速測(cè)取。因此同類型、同價(jià)位車型間無法進(jìn)行油耗對(duì)比。一輛排量2.4L的車,理論油耗為6.2L/100km,而實(shí)際油耗卻高達(dá)10L/100km以上。實(shí)測(cè)綜合油耗與理論油耗相差的竟然如此之大。
因此工業(yè)和信息化部公布《輕型汽車燃料消耗量標(biāo)示管理規(guī)定》:針對(duì)總質(zhì)量在3.5t以下的乘用車和輕型商用車,包括國(guó)產(chǎn)和進(jìn)口車型,在銷售時(shí)必須粘貼《汽車燃料消耗量標(biāo)識(shí)》,并標(biāo)注按照國(guó)家統(tǒng)一標(biāo)準(zhǔn)測(cè)定的市區(qū)、市郊、綜合三種工況的油耗量,并于2010年1月1日起施行。汽車燃料消耗量標(biāo)示數(shù)據(jù)根據(jù)GB/T 19233-2008《輕型汽車燃料消耗量試驗(yàn)方法》測(cè)定。
《輕型汽車燃料消耗量標(biāo)示管理規(guī)定》,標(biāo)志著統(tǒng)一標(biāo)準(zhǔn)下的車輛真實(shí)油耗即將取代目前車廠所公布的油耗數(shù)據(jù)。新車將被強(qiáng)制要求在指定檢測(cè)機(jī)構(gòu)進(jìn)行燃料消耗量檢測(cè),以獲得統(tǒng)一標(biāo)準(zhǔn)下的車輛真實(shí)油耗數(shù)據(jù)。這在消費(fèi)者對(duì)各種油耗值信任度下降的背景下,需要一個(gè)更專業(yè)、更權(quán)威的檢測(cè)數(shù)據(jù)來正本清源。
3、汽車油耗關(guān)系到環(huán)保節(jié)能及汽車前沿技術(shù)的發(fā)展和應(yīng)用
我們的機(jī)動(dòng)車保有量,隨著這些年的經(jīng)濟(jì)發(fā)展,飛快的增長(zhǎng)。這些增長(zhǎng)潛在著消耗我們的外匯和我們的環(huán)境與身體健康。
據(jù)統(tǒng)計(jì),每千輛汽車每天排出一氧化碳約3000kg,碳?xì)浠衔?00—400kg,氮氧化合物50—150kg;美國(guó)洛杉磯市汽車等流動(dòng)污染源排放的污染物已占大氣污染物總量的90%。汽車尾氣可謂大氣污染的“元兇”。
我們每年購買石油使用的美元千億上下!我們近2億輛機(jī)動(dòng)車,如果全部開動(dòng),那么一天就會(huì)排出一項(xiàng)一氧化碳就是60萬噸。會(huì)對(duì)人體健康產(chǎn)生多么大的影響?!石油每年消耗我們數(shù)千億美元、機(jī)動(dòng)車每天給我們呼吸的空氣中添加一氧化碳60萬噸。所以我中國(guó)面臨著國(guó)內(nèi)的油田產(chǎn)量已經(jīng)嚴(yán)重滿足不了國(guó)家與人民群眾的需求、必須每年外購千億美元的石油、使用石油帶來的嚴(yán)重的空氣污染、等等!這些嚴(yán)重的問題?,他迫切的要求我們對(duì)汽車燃油消耗進(jìn)行精確控制,達(dá)到節(jié)能減排的目的。
2004年的產(chǎn)業(yè)政策,首次鮮明地提出國(guó)家引導(dǎo)和鼓勵(lì)發(fā)展節(jié)能環(huán)保型小排量汽車。汽車產(chǎn)業(yè)及相關(guān)產(chǎn)業(yè)要注重發(fā)展和應(yīng)用新技術(shù),提高汽車的燃油經(jīng)濟(jì)性,明確提出2010年前,乘用車新車平均油耗比2003年降低15%以上。要依據(jù)有關(guān)節(jié)能方面技術(shù)規(guī)范的強(qiáng)制性要求,建立汽車油耗公示制度。
國(guó)家發(fā)改委等相關(guān)部門制定的乘用車類汽車的節(jié)能目標(biāo)也與我國(guó)的石油資源狀況吻合——即通過先進(jìn)節(jié)能技術(shù)的應(yīng)用,使燃料消耗量年均下降4%,到2020年共計(jì)下降50%,也即2020年時(shí)乘用車的平均燃料消耗量達(dá)到5L/100km,實(shí)現(xiàn)與國(guó)際水平的接軌。
因此研究汽車油耗檢測(cè)方法,采用不同的油耗檢測(cè)方法適應(yīng)不同的檢測(cè)要求,具有重要意義。
1.5本設(shè)計(jì)主要研究?jī)?nèi)容
我國(guó)對(duì)燃油消耗量的測(cè)量研究已取得一些成果。但是要提高汽車的燃油經(jīng)濟(jì)性,就要以燃油消耗量的準(zhǔn)確測(cè)量為前提?;诔暡夹g(shù)的燃油消耗檢測(cè)儀器可以有效提高這種測(cè)量的精度。
本文主要研究的內(nèi)容:
(1)介紹基于超聲波技術(shù)的汽車油耗檢測(cè)技術(shù)理論;分析汽車油耗不同檢測(cè)方法的特點(diǎn);設(shè)計(jì)本次油耗儀器的結(jié)構(gòu);
(2)確定基于超聲波技術(shù)的汽車油耗檢測(cè)的控制原理;設(shè)計(jì)建立汽車油耗檢測(cè)的數(shù)學(xué)模型;
(3)設(shè)計(jì)汽車油耗檢測(cè)儀器的總體結(jié)構(gòu)和選擇硬件設(shè)備,并進(jìn)行系統(tǒng)控制電路設(shè)計(jì);
(4)根據(jù)儀器功能要求和油耗檢測(cè)數(shù)學(xué)模型等進(jìn)行軟件系統(tǒng)流程設(shè)計(jì),編寫控制程序流程圖;
(5)超聲波檢測(cè)儀器的外形設(shè)計(jì);
(6)超聲波換能器的夾緊機(jī)構(gòu)的設(shè)計(jì)。
第2章 超聲波式燃油消耗檢測(cè)儀的原理及方案的確定
2.1汽車油耗儀器的測(cè)量方法與分類
汽車油耗檢測(cè)方法包括直接測(cè)量法和間接測(cè)量法兩類。
2.1.1直接測(cè)量法
直接測(cè)量法通過計(jì)量一定時(shí)間或里程內(nèi)汽車所消耗的燃油體積或質(zhì)量,得到汽車的燃油消耗量。包括容積法、質(zhì)量法(失重法)等。
該方法需要將油耗儀串入發(fā)動(dòng)機(jī)的燃油供給系統(tǒng),存在著安全問題(汽油揮發(fā)造成污染和易燃);油耗儀串入到油路中會(huì)影響到發(fā)動(dòng)機(jī)燃油的供給和燃油消耗量的測(cè)試精度;同時(shí),油耗儀的安裝連接十分不便;安裝和測(cè)量過程時(shí)間較長(zhǎng)。
(1)容積法、質(zhì)量法油耗檢測(cè)原理
如圖2.1所示,系統(tǒng)采用流量傳感器檢測(cè)燃油流量信號(hào),并將信號(hào)送給單片機(jī)處理,單片機(jī)根據(jù)存儲(chǔ)器中存儲(chǔ)的數(shù)據(jù)和相應(yīng)的控制程序得到不同要求和條件下的油耗量,通過顯示器或打印機(jī)進(jìn)行數(shù)據(jù)輸出,通過鍵盤實(shí)現(xiàn)人機(jī)交互功能,還可通過通訊接口實(shí)現(xiàn)數(shù)據(jù)傳輸,擴(kuò)展系統(tǒng)功能。
通常體積流量檢測(cè)采用渦輪流量傳感器、超聲波流量計(jì)等,質(zhì)量流量檢測(cè)采用壓差傳感器(質(zhì)量傳感器)。
圖2.1 油耗檢測(cè)原理
發(fā)動(dòng)機(jī)進(jìn)、回油管道上各安裝一只渦輪流量傳感器,用來得到進(jìn)、回油管道的流量信號(hào),并送入單片機(jī)。單片機(jī)對(duì)進(jìn)、回油管道流量信號(hào)進(jìn)行處理,并做溫度修正,得到進(jìn)、回油管道標(biāo)態(tài)體積流量,然后對(duì)進(jìn)、回油管道的流量進(jìn)行差值計(jì)算,累加得到實(shí)際燃油消耗量。
(2)油耗測(cè)量計(jì)量方法
①容積法測(cè)量。在測(cè)量范圍內(nèi),傳感器輸出的脈沖頻率與體積流量成正比,該比值即體積儀表系數(shù)K,計(jì)算公式:
或 (2.1)
式中:
為流量信號(hào)頻率,Hz;
為體積流量,l/h;
為脈沖數(shù);
為體積總量,L。
將儀表系數(shù) K預(yù)先置入單片機(jī)中,單片機(jī)即可由獲得的流量脈沖頻率 f 與儀表系數(shù)K之比求得管道燃油流量Q。
②質(zhì)量法(失重法)測(cè)量,如圖2.2所示。
圖2-2 質(zhì)量法(失重法)測(cè)量原理
圖中:1-密封貯油罐 2-質(zhì)量傳感器 3-信號(hào)處理4-電路電磁閥 5-供油管 6-出油管 7-旁通管
密封貯油罐固定于質(zhì)量傳感器之上,質(zhì)量傳感器輸出與油罐內(nèi)的燃油質(zhì)量成正比的電信號(hào):
(2.2)
式中為油罐自重;為罐內(nèi)燃油質(zhì)量;為貯油罐總質(zhì)量。
測(cè)量時(shí),傳感器輸出的電壓信號(hào)隨著油罐中燃油的消耗而降低。對(duì)測(cè)量過程傳感器輸出的電壓信號(hào)求導(dǎo),k為儀表常數(shù):
(2.3)
2.1.2間接測(cè)量法
間接測(cè)量法即不解體測(cè)量法,包括碳平衡法、超聲波法(測(cè)體積流量)、燃油噴射量累積法等。
(1)碳平衡法
通過發(fā)動(dòng)機(jī)混合氣燃燒前、后的碳(C)質(zhì)量守恒,得到汽車的燃油消耗量?;谖镔|(zhì)守恒定律。該方法只要測(cè)得排氣 (或稀釋排氣) 中含C成分(主要是CO2、CO、HC) 和排氣(或稀釋排氣)的流量,就可得到排氣中總的C質(zhì)量;燃燒前的C質(zhì)量主要來源于燃料 ,同時(shí)考慮參與燃燒的空氣(或用于稀釋的空氣)含有的C。因此,只要測(cè)量(稀釋) 排氣的流量和含C成分的濃度以及空氣中的含C成分濃度,就可實(shí)現(xiàn)汽車和發(fā)動(dòng)機(jī)不解體燃油消耗量的測(cè)量,解決直接測(cè)量法存在的弊端。
(2)燃油噴射量累積法
根據(jù)電控噴射發(fā)動(dòng)機(jī)的特性及原理,汽車耗油量與噴油器的開啟時(shí)間成正比,直接通過采集噴油器的控制脈沖寬度(即噴油時(shí)間),找出耗油量和控制信號(hào)脈寬之間的關(guān)系,只需測(cè)量控制信號(hào)脈寬就可以計(jì)算出相應(yīng)的耗油量及耗油率。
(3)超聲波法(測(cè)體積流量)
當(dāng)超聲波在流動(dòng)的媒質(zhì)中傳播時(shí),超聲波速度與靜止媒質(zhì)的傳播速度有所不同,其變化值與媒質(zhì)流速有關(guān)。因此根據(jù)超聲波速度的變化即可求出媒質(zhì)流速。
2.2超聲波流量計(jì)發(fā)展歷程與研究現(xiàn)狀
2.2.1超聲波測(cè)量技術(shù)發(fā)展概況
超聲波流量測(cè)量技術(shù)是一種利用超聲波信號(hào)在流體中傳播時(shí)所載流體的流速信息來測(cè)量流體流量的新的測(cè)量技術(shù)。這種技術(shù)不僅應(yīng)用在工業(yè)的石油、水資源的管理等各方面,而且在醫(yī)療、海洋觀測(cè)、河流及各種計(jì)量測(cè)試中都有著廣泛的應(yīng)用。
20世紀(jì)30年代,Rutten發(fā)表的專利提出了用聲信號(hào)測(cè)量流量,帶動(dòng)了各國(guó)超聲波流量測(cè)量的研究,如美國(guó)、意大利等相繼出現(xiàn),但都沒有大的進(jìn)展,都局限十對(duì)相位差法的研究。50年代,出現(xiàn)“鳴環(huán)”測(cè)量法,即通過多次循環(huán)測(cè)量,其測(cè)量周期長(zhǎng),響應(yīng)慢,系統(tǒng)可靠性差。20世紀(jì)70年代中后期,由于電路技術(shù)的發(fā)展,使得超聲波流量計(jì)克服了一些以前的弱點(diǎn),使高精度時(shí)間測(cè)量成為可能,加上具有高性能的鎖相環(huán)(PLL)技術(shù)的應(yīng)用,使得超聲波流量計(jì)的性能開始完善,在穩(wěn)定性和可靠性方面得到了提高。聲速變化會(huì)對(duì)測(cè)量結(jié)果產(chǎn)生影響,所以出現(xiàn)了頻差法,來消除聲速帶來的誤差。鎖相頻差法測(cè)量方法,測(cè)量周期短,響應(yīng)速度快,所以這種測(cè)量方法在大管徑大流量的超聲波流量計(jì)的設(shè)計(jì)得到應(yīng)用并且測(cè)量精度得到保證,但缺點(diǎn)是不能應(yīng)用在小管徑小流量的測(cè)量,保證不了測(cè)量的精度。加上前蘇聯(lián)的科研工作者通過大量的實(shí)驗(yàn)對(duì)管道內(nèi)流體作了深入的研究,得出管道內(nèi)流體流動(dòng)存在層流和紊流兩種狀態(tài),并給出了層流狀態(tài)與紊流狀態(tài)下流速分布規(guī)律,為了使超聲波流量計(jì)的測(cè)量更加準(zhǔn)確,精度得到提高,提出了流速修正系數(shù)及理想狀態(tài)下的理論計(jì)算公式。至此,性能日益完善的超聲波流量計(jì)投入市場(chǎng),開始迅速發(fā)展起來。到了80年代,隨著電子技術(shù)及相關(guān)理論的發(fā)展,超聲波流量計(jì)的種類也越來越多,其中最主要的是頻差法、時(shí)差法、多普勒法、相關(guān)法、射束位移法等。后來單片機(jī)技術(shù)在超聲波流量計(jì)得到應(yīng)用,有了單片機(jī)做核心控制處理單元,使得系統(tǒng)能夠進(jìn)行復(fù)雜的數(shù)據(jù)運(yùn)算、分析與邏輯處理,還能設(shè)計(jì)出方便于用戶使用的人機(jī)界面,使得超聲波流量計(jì)向高性能、智能化方向發(fā)展。單片機(jī)在超聲波流量計(jì)中的使用,超聲波流量計(jì)真正開始走向了成熟。
最近10多年來,由于微處理器技術(shù)的進(jìn)步、高速數(shù)字芯片的出現(xiàn)和數(shù)字信號(hào)處理技術(shù)的成熟,以及先進(jìn)壓電陶瓷和材料加工技術(shù)的發(fā)展,對(duì)超聲波聲道的不同配置和對(duì)流體動(dòng)力學(xué)的深入研究,超聲波流量測(cè)量技術(shù)取得了巨大的進(jìn)步,在越來越多領(lǐng)域得到了應(yīng)用,具有廣闊的發(fā)展前景。
2.2.2超聲波流量計(jì)國(guó)內(nèi)外研究現(xiàn)狀
當(dāng)今全世界超聲波流流量測(cè)量技術(shù)處于領(lǐng)先水平的國(guó)家有:美國(guó)、日本、荷蘭、德國(guó)、英國(guó)、和加拿大等。它們?cè)诔暡髁坑?jì)方面具有較高的技術(shù),在研制和生產(chǎn)方面具有豐富的經(jīng)驗(yàn),占據(jù)了很大部分份額的超聲流量計(jì)市場(chǎng),主導(dǎo)著超聲波流量計(jì)的發(fā)展趨勢(shì)。他們的測(cè)量技術(shù)和測(cè)量精度都達(dá)到了較高的水平。較多的國(guó)外產(chǎn)品采用數(shù)字信號(hào)處理技術(shù)。同時(shí)結(jié)合功能強(qiáng)大的DSP(數(shù)字信號(hào)處理Digital Signal Processing技術(shù))實(shí)現(xiàn)快速實(shí)時(shí)地對(duì)超聲波信號(hào)進(jìn)行處理,并實(shí)現(xiàn)一些復(fù)雜的測(cè)量或數(shù)據(jù)處理算法。在測(cè)量方法方面有的利用改進(jìn)的算法,來提高系統(tǒng)的測(cè)量精度,使得超聲波流量計(jì)得到更廣泛的應(yīng)用。
我國(guó)對(duì)超聲波流量計(jì)的研究起步較晚,發(fā)展時(shí)間并不長(zhǎng)。早期使用的都需要從國(guó)外購買。后來通過科研人員的努力,引進(jìn)國(guó)外先進(jìn)技術(shù),使得超聲波流量計(jì)發(fā)展起來。國(guó)內(nèi)生產(chǎn)超聲波流量計(jì)廠家主要有唐山匯中儀表有限公司、唐山大方電子技術(shù)有限公司、上海自動(dòng)化儀表有限公司、大連長(zhǎng)風(fēng)電子有限公司、大連索尼卡電子有限公司、北京衡安特測(cè)控技術(shù)有限公司等。但是我們的產(chǎn)品和國(guó)際水平還是存在較大的差距,我們大多采用簡(jiǎn)單的算法和以單片機(jī)為系統(tǒng)核心進(jìn)行信號(hào)處理,使得在信號(hào)處理速度和精度上受到限制。
(a)1010P 便攜式超聲波流量計(jì) (b)FV3018固定式超聲波流量計(jì)
廠商:美國(guó)康了創(chuàng)Controlotron 廠商:大連索尼卡電子有限公司
(c)TDS-100H 手持式超聲波流量計(jì) (d)TDS-100S 盤裝式超聲波流量計(jì)
廠商:上海橫特自動(dòng)化儀表有限公司 廠商:大連大禹儀器儀表有限公司
圖2.3 超聲波流量計(jì)產(chǎn)品圖
目前國(guó)內(nèi)外較多的采用多普勒法和時(shí)差法來實(shí)現(xiàn)超聲波流量測(cè)量技術(shù)。但在應(yīng)用對(duì)象上有一定區(qū)別,其中多普勒法主要用于含有較多的懸浮顆粒和氣泡的場(chǎng)合,時(shí)差法主要用于測(cè)量均勻純凈的流體。有些場(chǎng)合也采用兩種混合的方法。
近年來由于大規(guī)模集成電路技術(shù)的發(fā)展,數(shù)字處理技術(shù)越來越成熟,DSP芯片的功能日益完善與強(qiáng)大,以其精度高、處理速度快、性價(jià)比高等優(yōu)勢(shì),被越來越多的領(lǐng)域所使用,為超聲波流量計(jì)的發(fā)展提供了有利條件,以及高精度測(cè)時(shí)芯片的出現(xiàn),為時(shí)差法超聲波流量計(jì)的計(jì)時(shí)精度提供了保證。以軟、硬件資源豐富的DSP為處理核心的超聲波流量計(jì)來廣泛取代國(guó)內(nèi)的以單片機(jī)為核心的超聲波流量計(jì),并結(jié)合一些數(shù)字信號(hào)處理技術(shù)來對(duì)信號(hào)進(jìn)行處理分析等,來改善超聲波流量計(jì)的測(cè)量精度,使我國(guó)的超聲波流量測(cè)試技術(shù)能與國(guó)外技術(shù)相抗衡,帶動(dòng)科學(xué)技術(shù)的發(fā)展,更好的為國(guó)民經(jīng)濟(jì)作出貢獻(xiàn)。
圖2.3給出了幾種超聲波流量計(jì)產(chǎn)品的照片,美國(guó)康樂創(chuàng)的IOIOP便攜式超聲波流量計(jì),采用外火式安裝換能器,內(nèi)置時(shí)差式和I多普勒式兩種測(cè)量技術(shù),既可以測(cè)量脫離子水也可以測(cè)量高含氣或固體顆粒的液體,可測(cè)量的管徑范圍從6mm到10m,精度為0.5%,。大連索尼卡的FV3018是管外測(cè)量時(shí)差式超聲波流量計(jì),測(cè)量管徑從15mm到6m,精度為士1.0%。上海橫特自動(dòng)化儀表的TDS-1 OOH手持式超聲波流量計(jì),采用時(shí)間差超聲測(cè)量原理,適用管徑范圍為15mm到6m,精度優(yōu)于1%。大連大禹儀器儀表的TDS-100S盤裝 式超聲波流量計(jì),口徑也是15mm到6m,是國(guó)內(nèi)最先到達(dá)精度為1%的超聲波流量計(jì)。
2.3管道流量測(cè)量的理論基礎(chǔ)
2.3.1流量的基本概念
流量是指單位時(shí)間內(nèi)流過某一截面的流體量,又稱為瞬時(shí)流量。流量又分為質(zhì)量流量和體積流量,質(zhì)量流量是指單位時(shí)間內(nèi)流過流體的質(zhì)量,體積流量是指單位時(shí)間內(nèi)流過流體的體積。質(zhì)量流量一般用表示,體積流量一般用表示。用數(shù)學(xué)表達(dá)式可以表示為
(2.4)
(2.5)
式中:
-----------體積流量,;
----------質(zhì)量流量,;
----------流體體積,;
----------流體質(zhì)量,;
-----------時(shí)間,;
----------流體密度,;
----------管內(nèi)面平均流速,m/s;
----------管道截面積,。
如果流體流動(dòng)是不隨時(shí)間顯著變化的,稱之為常流,式(2.4)和式(2.5)中的時(shí)間△t可以取任意單位時(shí)間。如果流動(dòng)是非定時(shí)常流,即流量隨時(shí)間不斷變化,則式(2.4)和式(2.5)中的時(shí)間△t應(yīng)足夠短,以致可以認(rèn)為在該段時(shí)間內(nèi)流動(dòng)是穩(wěn)定的。所以流量的概念是瞬時(shí)的概念,流量是瞬時(shí)流量的簡(jiǎn)稱。
在一段時(shí)間內(nèi)流過管道橫截面或明渠橫斷面的流體總量稱為“累積流量”,也常被稱為“總量”。在數(shù)值上它等于流量對(duì)時(shí)間的積分,例如時(shí)刻到時(shí)刻的累積體積流量和累積質(zhì)量流量的計(jì)算公式為:
(2.6)
(2.7)
2.3.2管道內(nèi)流體理論
1.管道內(nèi)流體的流動(dòng)狀態(tài)
由于實(shí)際流體具有粘性,當(dāng)實(shí)際流體在管道中流動(dòng)時(shí),一般有兩種流動(dòng)狀態(tài),一種是層流流動(dòng),一種紊流流動(dòng)。這是兩種性質(zhì)截然不同的流動(dòng)狀態(tài),流速的計(jì)算方法也不相同。
層流狀態(tài)是指管內(nèi)流體只有軸向的運(yùn)動(dòng),而無垂直于流體流動(dòng)方向的橫向運(yùn)動(dòng)。層流流動(dòng)時(shí),管內(nèi)流體分層流動(dòng),各個(gè)流層之間互不混雜,平行于管道軸線方向流動(dòng),流層間沒有流體質(zhì)點(diǎn)的相互交換。流體通過一段管道的壓力降與流量成正比。
紊流狀態(tài)是指流體質(zhì)點(diǎn)既有軸向的運(yùn)動(dòng),也有橫向的運(yùn)動(dòng)。紊流流動(dòng)時(shí),管內(nèi)流體不再分層流動(dòng),流體中質(zhì)點(diǎn)除了沿管道軸線向外流動(dòng)外,還有劇烈的徑向運(yùn)動(dòng),流體通過一段管道的壓力降與流量的平方成正比。
區(qū)分管內(nèi)流動(dòng)是層流流動(dòng)還是紊流流動(dòng)的判斷依據(jù)是一個(gè)無量綱數(shù),稱為雷諾數(shù),用R。表示.
2.管道內(nèi)流體的流速計(jì)算方法
在管道橫截面上流體速度軸向分量的分布模式稱為速度分布。這是由于實(shí)際流體都具有粘性而造成的。一般規(guī)律是,越靠近管壁,由于流體與管壁的粘滯作用,流速越小,管壁上的流速為零;越靠近管中心,由于流體與管壁的這種粘滯作用越小,流速就越大,管道中心的流速值達(dá)到最大。
管道內(nèi)的流動(dòng)狀態(tài)不同,所呈現(xiàn)的流速分布也不同。人們?cè)陂L(zhǎng)期的生產(chǎn)實(shí)踐中對(duì)管內(nèi)的流體流速分布做了不少的研究,提出了很多流速分布模型。下面只介紹一種比較簡(jiǎn)單的流速分布模型。即層流流動(dòng)時(shí):
(2.8)
紊流流動(dòng)時(shí):
(2.9)
式中:
----------管道中心的徑向距離,;
-----------距管道中心Yx處的流速,m/s;
---------管道中心的最大流速,m/s;
----------管道半徑,m;
----------隨雷諾數(shù)變化而變化的指數(shù),無量綱數(shù)。
通過檢測(cè)流體速度來求得流量的速度式流量計(jì),一般都是檢測(cè)管道內(nèi)流體的平均流速來求得流量的。在流量測(cè)量中,平均流速是一個(gè)很重要的參數(shù),如計(jì)算雷諾數(shù)和流量等數(shù)據(jù)時(shí),只要用到流速的地方,幾乎都是用平均流速來計(jì)算的。
所謂平均流速,就是指管道截面上的平均流速。當(dāng)管內(nèi)流體以某一流速均勻分布時(shí),通過管道某截面的流量正好等于管內(nèi)流體以某一速度分布時(shí)通過該管道截面的流量,則就是該截面上速度分布為時(shí)的平均流速。
其數(shù)學(xué)表達(dá)式為:
(2.10)
對(duì)于圓管,將代入上式,得到層流狀態(tài)下的平均流速為:
(2.11)
紊流狀態(tài)下平均流速為:
(2.12)
對(duì)于超聲流量計(jì),由于聲波并非經(jīng)過整個(gè)管道截面,而往往是經(jīng)過管道的中心軸方向,所以它測(cè)量的流速是管道中心軸方向的平均流速,一般記為v.
其數(shù)學(xué)表達(dá)式為:
(2.13)
對(duì)于圓管,將代入式(2.10),得層流狀態(tài)圓管內(nèi)中心軸向上的平均流速為:
(2.14)
截面平均流速為:
(2.15)
紊流狀態(tài)下,圓管內(nèi)中心軸向上的平均流速為:
(2.16)
則截面平均流速為:
(2.17)
2.3.3流速補(bǔ)償系數(shù)對(duì)流速公式的修正
測(cè)量流體通過某截面的流量時(shí),需要測(cè)量垂直截面的面平均流速,而從穿過流體的超聲波信號(hào)中檢測(cè)出的流體流速是沿超聲波傳播路徑上的線平均流速,它們的關(guān)系應(yīng)從流體力學(xué)中加以修正。線平均流速與面平均流速的差異,取決于流速的分布情況。當(dāng)管道線平均流速值為V時(shí),它與截面平均流速,之比稱為流速補(bǔ)償系數(shù)。
由流體力學(xué)可知,流速補(bǔ)償系數(shù)K取決于管道的雷諾數(shù),而又取決于流體的流速、管徑和流體的粘度等因素。其值可查找相關(guān)圖表得到,也可通過計(jì)算得到,當(dāng)流體在圓形管道內(nèi)流動(dòng)時(shí),可以寫成
(2.18)
式中:
----------管內(nèi)流體的線平均流速,
----------管道內(nèi)徑,
----------管內(nèi)流體的流動(dòng)粘度,
的大小決定了流體的流動(dòng)狀態(tài),與的關(guān)系根據(jù)流體的流動(dòng)狀態(tài)不同而不同,可用如下公式計(jì)算:
1、當(dāng)流體呈層流狀態(tài)時(shí):
(2.19)
2、當(dāng)流體呈紊流狀態(tài)時(shí):
(2.20)
3、當(dāng)流體流動(dòng)狀態(tài)介于層流狀態(tài)與紊流狀態(tài)之間時(shí):
(2.21)
以上K的計(jì)算公式都是基于這樣一種假設(shè)前提:即換能器的安裝起點(diǎn)前后有足夠的直管段。事實(shí)上,由于流速分布規(guī)律的復(fù)雜性,特別是對(duì)紊流狀態(tài)下的流速分布規(guī)律,還沒有十分準(zhǔn)確的認(rèn)識(shí),因此如何得到比較精確的K值是制約超聲流量計(jì)進(jìn)一步提高測(cè)量精度的關(guān)鍵問題之一。但是到目前為止,由于管道流體流速分布規(guī)律的復(fù)雜性,人們對(duì)流體流速分布規(guī)律和流速分布的研究?jī)H限于理想管道流,即光管層流條件下的流體流速分布規(guī)律和光管紊流條件下的流體流速的分布規(guī)律。
2.4超聲波流量測(cè)量的原理
超聲波流量計(jì)按其測(cè)量原理其常用的測(cè)量方法有:傳播速度差法、多普勒法、相關(guān)法、波束偏移法、噪聲法、旋渦法、流速-液面法等,各種方法在流量測(cè)量測(cè)量中具有自的特點(diǎn),可以根據(jù)被測(cè)流體、精度要求等來選擇哪種類型的超聲波流量計(jì)。最常用的是時(shí)差法(傳播速度差法)和多普勒法。
2.4.1時(shí)差法
傳播速度差法是根據(jù)超聲波信號(hào)在流體介質(zhì)中,受介質(zhì)流速的影響,導(dǎo)致順流傳播和逆流傳播速度不同,從而來計(jì)算流速,進(jìn)而求得流量的。按所測(cè)物理量的不同可以分為時(shí)差法、頻差法和相位差法。就超聲波探頭的配置方法不同,傳播速度差法又分為:Z法(透過法)、v法(反射法)、x法(交叉法)等,如圖2.4所示。
Z法(透過法)
v法(反射法)
x法(交叉法)
圖2.4 傳播速度差法的基本配置法
當(dāng)流體平行于管道中心軸方向流動(dòng)時(shí),采用直接透過法(z法)測(cè)量,能夠得到較好的精度。當(dāng)流動(dòng)的方向與管道中心軸不平行或存在著沿半徑方向流動(dòng)的速度成分時(shí),采用發(fā)射法(v法),可以避免由速度分量產(chǎn)生的誤差。當(dāng)換能器安裝間隔受到限制時(shí),可用v法的變形方法交叉法(x法)。
圖2.5 傳播速度差法原理圖
時(shí)差法是利用超聲波在流體中傳播的時(shí)間頻率差來測(cè)量的。如圖2.5中,超聲波在靜止流體中的速度為c,流體的速度為V,管內(nèi)徑為D,發(fā)射角為θ。
順流方向發(fā)射超聲波脈沖的傳播時(shí)間為:
(2.22)
逆流方向發(fā)射超聲波脈沖的傳播時(shí)間為:
(2.23)
傳播時(shí)間差為:
(2.24)
由于超聲波傳播速度c遠(yuǎn)遠(yuǎn)大于流體速度,故可以認(rèn)為,得
(2.25)
由此可得:
(2.26)
而時(shí)間差可以用控制電路來進(jìn)行控制。
2.4.2多普勒法
多普勒超聲波流量計(jì)是利用聲波的多普勒效應(yīng)進(jìn)行測(cè)量的。多普勒效應(yīng)可表述為:當(dāng)發(fā)射器和接收器之間有相對(duì)運(yùn)動(dòng)的時(shí)候,接收器所接收到的聲頻率就會(huì)發(fā)生改變,這個(gè)相對(duì)于聲源頻率的變化就是多普勒頻移,其大小是正比于發(fā)射器與接收器之間的相對(duì)速度。發(fā)射角為,則多普勒頻移為
(2.27)
所以可通過測(cè)量得到流速:
(2.28)
這種方法測(cè)量的超聲波流量計(jì)不但具有一般超聲波流量計(jì)的優(yōu)點(diǎn),如可安裝在管外,無流動(dòng)壓損等,而且在測(cè)量時(shí)響應(yīng)靈敏、分辨率高,不易受流體的狀態(tài)參數(shù)等的影響,但它的測(cè)量精度會(huì)受固體顆粒大小、濃度的影響,所以主要應(yīng)用于精度要求不高顆粒及雜質(zhì)比較多的不均勻流體流量測(cè)量,利用多普勒頻移來獲得流量,在比較潔凈的流體中就難以發(fā)揮作用。
2.4.3相關(guān)法
相關(guān)法是建立在信息論和隨機(jī)理論的基礎(chǔ)上,相關(guān)法流量計(jì)是流動(dòng)標(biāo)記法的一種,它的原理是:大多數(shù)流體在管道內(nèi)以相關(guān)方式運(yùn)動(dòng)的湍流模式存在的,流動(dòng)介質(zhì)中可以觀測(cè)到的某種示蹤標(biāo)記沿流動(dòng)方向兩固定點(diǎn)所渡越的時(shí)間,來求取流速及流量。如果在固定點(diǎn)上安裝兩對(duì)探頭,接收探頭接收到的信號(hào)在時(shí)域上是接收探頭接收到信號(hào)的一個(gè)簡(jiǎn)單延遲,其延時(shí)就是示蹤標(biāo)記的渡越時(shí)間,設(shè)兩探頭間的距離為,得到
(2.29)
的求取是通過互相關(guān)法得到的。兩組信號(hào)的互相關(guān)函數(shù)可以表示為:
(2.30)
當(dāng)延時(shí)時(shí),的值很?。?時(shí),兩組信號(hào)重合,達(dá)到最大。
相關(guān)法具有較高的抗干擾性,測(cè)量的準(zhǔn)確度高,多用于兩相流的流速測(cè)量中,可以采用多個(gè)控制截面來提升系統(tǒng)的測(cè)量精度。但是它的缺點(diǎn)是需要多個(gè)超聲波傳感器,從而增加了成本,線路也變得復(fù)雜。
2.5超聲波測(cè)量方案的確定
從前面分析的幾種超聲波流量計(jì)的原理及各方面的要求出發(fā),同時(shí)考慮到本超聲波測(cè)試系統(tǒng)測(cè)量的是不含雜質(zhì)的液體,本文采用時(shí)差法進(jìn)行測(cè)量。時(shí)差法是利用超聲波在流體中傳播的時(shí)間差來測(cè)量的,控制方法分別以順流/逆流超聲波發(fā)射時(shí)間及時(shí)差公式(2.22、2.23、2.24)可得到傳播時(shí)間差。進(jìn)而得到在內(nèi)的傳播速度。
再利用公式
(2.31)
(2.32)
來求得流速,再利用公式2.32(流量公式)從而算出流量。所以測(cè)出流速是本文的重點(diǎn),而測(cè)流速關(guān)鍵又在于順流傳播時(shí)間和逆流傳播時(shí)間的測(cè)量。測(cè)量流速公式中不含聲速c,提高系統(tǒng)測(cè)量精度。為了降低成本,采用兩個(gè)探頭,兩個(gè)換能器的切換控制原理如圖2.3所示,兩個(gè)探頭火裝在管道的外面,順流傳播時(shí),探頭A發(fā)射超聲波,探頭B接收載有流速信息的超聲波信號(hào);逆流傳播時(shí),B發(fā)射,A接收,兩個(gè)探頭交替地發(fā)射和接收超聲波信號(hào),并且采用Z法安裝,兩個(gè)探頭收發(fā)復(fù)用,利用控制電路對(duì)其收發(fā)進(jìn)行切換。就可以實(shí)現(xiàn)A、B的收發(fā)復(fù)用的轉(zhuǎn)換了。
圖2.6 換能器切換控制原理圖
考慮到系統(tǒng)的響應(yīng)速度和數(shù)據(jù)處理能力,利用程序芯片進(jìn)行計(jì)算就可以得到需要的測(cè)量值。
其過程大致可以分為如下情況:
第一,超聲波信號(hào)的發(fā)射與接收過程,放大、濾波電路進(jìn)入主程序。
第二,在核心處理部分,進(jìn)行順流傳播時(shí)間與逆流傳播時(shí)間的測(cè)量,流量的計(jì)算等;
第三,最后得出流量輸出,通過串口輸出或者打印。
2.6本章小結(jié)
超聲波應(yīng)用到流量計(jì)量當(dāng)中也是當(dāng)今人們?cè)絹碓疥P(guān)注的問題。在本章中介紹了燃油消耗儀器的分類方法和超聲波流量計(jì)的發(fā)展歷史與研究過程以及超聲波法測(cè)量流量的測(cè)量原理。然后針對(duì)管道