(全國通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 數(shù)列 第1講 等差數(shù)列與等比數(shù)列學(xué)案 文
《(全國通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 數(shù)列 第1講 等差數(shù)列與等比數(shù)列學(xué)案 文》由會員分享,可在線閱讀,更多相關(guān)《(全國通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 數(shù)列 第1講 等差數(shù)列與等比數(shù)列學(xué)案 文(15頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 第1講 等差數(shù)列與等比數(shù)列 [考情考向分析] 1.等差、等比數(shù)列基本量和性質(zhì)的考查是高考熱點(diǎn),經(jīng)常以小題形式出現(xiàn).2.數(shù)列求和及數(shù)列與函數(shù)、不等式的綜合問題是高考考查的重點(diǎn),考查分析問題、解決問題的綜合能力. 熱點(diǎn)一 等差數(shù)列、等比數(shù)列的運(yùn)算 1.通項(xiàng)公式 等差數(shù)列:an=a1+(n-1)d; 等比數(shù)列:an=a1·qn-1. 2.求和公式 等差數(shù)列:Sn==na1+d; 等比數(shù)列:Sn==(q≠1). 3.性質(zhì) 若m+n=p+q, 在等差數(shù)列中am+an=ap+aq; 在等比數(shù)列中am·an=ap·aq. 例1 (1)(2018·北京)設(shè){an}是等差數(shù)列,
2、且a1=3,a2+a5=36,則{an}的通項(xiàng)公式為______. 答案 an=6n-3(n∈N*) 解析 方法一 設(shè)公差為d.∵a2+a5=36,∴(a1+d)+(a1+4d)=36,∴2a1+5d=36.∵a1=3,∴d=6,∴通項(xiàng)公式an=a1+(n-1)d=6n-3(n∈N*). 方法二 設(shè)公差為d,∵a2+a5=a1+a6=36,a1=3, ∴a6=33,∴d==6.∵a1=3,∴通項(xiàng)公式an=6n-3(n∈N*). (2)(2018·華大新高考聯(lián)盟質(zhì)檢)設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若a3a11=2a,且S4+S12=λS8,則λ=________. 答案 解
3、析 ∵a3a11=2a,∴a=2a,∴q4=2, ∵S4+S12=λS8, ∴+=, 1-q4+1-q12=λ(1-q8), 將q4=2代入計算可得λ=. 思維升華 在進(jìn)行等差(比)數(shù)列項(xiàng)與和的運(yùn)算時,若條件和結(jié)論間的聯(lián)系不明顯,則均可化成關(guān)于a1和d(q)的方程組求解,但要注意消元法及整體計算,以減少計算量. 跟蹤演練1 (1)設(shè)公比為q(q>0)的等比數(shù)列{an}的前n項(xiàng)和為Sn,若S2=3a2+2,S4=3a4+2,則a1等于( ) A.-2 B.-1 C. D. 答案 B 解析 S4-S2=a3+a4=3a4-3a2, 即3a2+a3-2a4=0,即3a2+
4、a2q-2a2q2=0, 即2q2-q-3=0,解得q=-1(舍)或q=, 當(dāng)q=時,代入S2=3a2+2, 得a1+a1q=3a1q+2,解得a1=-1. (2)(2018·全國Ⅲ)等比數(shù)列{an}中,a1=1,a5=4a3. ①求{an}的通項(xiàng)公式; ②記Sn為{an}的前n項(xiàng)和,若Sm=63,求m. 解?、僭O(shè){an}的公比為q,由題設(shè)得an=qn-1. 由已知得q4=4q2,解得q=0(舍去),q=-2或q=2. 故an=(-2)n-1或an=2n-1(n∈N*). ②若an=(-2)n-1,則Sn=. 由Sm=63得(-2)m=-188,此方程沒有正整數(shù)解. 若
5、an=2n-1,則Sn=2n-1. 由Sm=63得2m=64,解得m=6. 綜上,m=6. 熱點(diǎn)二 等差數(shù)列、等比數(shù)列的判定與證明 證明數(shù)列{an}是等差數(shù)列或等比數(shù)列的證明方法 (1)證明數(shù)列{an}是等差數(shù)列的兩種基本方法: ①利用定義,證明an+1-an(n∈N*)為一常數(shù); ②利用等差中項(xiàng),即證明2an=an-1+an+1(n≥2,n∈N*). (2)證明數(shù)列{an}是等比數(shù)列的兩種基本方法: ①利用定義,證明(n∈N*)為一常數(shù); ②利用等比中項(xiàng),即證明a=an-1an+1(n≥2,n∈N*). 例2 已知數(shù)列{an},{bn},其中a1=3,b1=-1,且滿足
6、an=(3an-1-bn-1),bn=-(an-1-3bn-1),n∈N*,n≥2. (1)求證:數(shù)列{an-bn}為等比數(shù)列; (2)求數(shù)列的前n項(xiàng)和Tn. (1)證明 an-bn=(3an-1-bn-1)-(an-1-3bn-1)=2(an-1-bn-1), 又a1-b1=3-(-1)=4, 所以{an-bn}是首項(xiàng)為4,公比為2的等比數(shù)列. (2)解 由(1)知,an-bn=2n+1,① 又an+bn=(3an-1-bn-1)+(an-1-3bn-1)=an-1+bn-1, 又a1+b1=3+(-1)=2, 所以{an+bn}為常數(shù)數(shù)列,an+bn=2,② 聯(lián)立①②得
7、,an=2n+1, ==-, 所以Tn=++…+ =-=-(n∈N*). 思維升華 (1)判斷一個數(shù)列是等差(比)數(shù)列,也可以利用通項(xiàng)公式及前n項(xiàng)和公式,但不能作為證明方法. (2)a=an-1an+1(n≥2)是數(shù)列{an}為等比數(shù)列的必要不充分條件,判斷時還要看各項(xiàng)是否為零. 跟蹤演練2 (2018·新余模擬)已知{an}是各項(xiàng)都為正數(shù)的數(shù)列,其前n項(xiàng)和為Sn,且Sn為an與的等差中項(xiàng). (1)求證:數(shù)列{S}為等差數(shù)列; (2)求數(shù)列{an}的通項(xiàng)公式; (3)設(shè)bn=,求{bn}的前n項(xiàng)和Tn. (1)證明 由題意知2Sn=an+,即2Snan-a=1,(*) 當(dāng)
8、n≥2時,有an=Sn-Sn-1,代入(*)式得 2Sn(Sn-Sn-1)-(Sn-Sn-1)2=1, 整理得S-S=1(n≥2). 又當(dāng)n=1時,由(*)式可得a1=S1=1, ∴數(shù)列{S}是首項(xiàng)為1,公差為1的等差數(shù)列. (2)解 由(1)可得S=1+n-1=n, ∵數(shù)列{an}的各項(xiàng)都為正數(shù), ∴Sn=, ∴當(dāng)n≥2時,an=Sn-Sn-1=-, 又a1=S1=1滿足上式, ∴an=-(n∈N*). (3)解 由(2)得bn== =(-1)n(+), 當(dāng)n為奇數(shù)時, Tn=-1+(+1)-(+)+…+(+)-(+)=-, 當(dāng)n為偶數(shù)時, Tn=-1+(+1
9、)-(+)+…-(+)+(+)=,
∴數(shù)列{bn}的前n項(xiàng)和Tn=(-1)n(n∈N*).
熱點(diǎn)三 等差數(shù)列、等比數(shù)列的綜合問題
解決等差數(shù)列、等比數(shù)列的綜合問題,要從兩個數(shù)列的特征入手,理清它們的關(guān)系;數(shù)列與不等式、函數(shù)、方程的交匯問題,可以結(jié)合數(shù)列的單調(diào)性、最值求解.
例3 已知等差數(shù)列{an}的公差為-1,且a2+a7+a12=-6.
(1)求數(shù)列{an}的通項(xiàng)公式an與其前n項(xiàng)和Sn;
(2)將數(shù)列{an}的前4項(xiàng)抽去其中一項(xiàng)后,剩下三項(xiàng)按原來順序恰為等比數(shù)列{bn}的前3項(xiàng),記{bn}的前n項(xiàng)和為Tn,若存在m∈N*,使得對任意n∈N*,總有Sn 10、的取值范圍.
解 (1)由a2+a7+a12=-6,得a7=-2,∴a1=4,
∴an=5-n,從而Sn=(n∈N*).
(2)由題意知b1=4,b2=2,b3=1,
設(shè)等比數(shù)列{bn}的公比為q,
則q==,
∴Tm==8,
∵m隨m的增加而減少,
∴{Tm}為遞增數(shù)列,得4≤Tm<8.
又Sn==-(n2-9n)
=-,
故(Sn)max=S4=S5=10,
若存在m∈N*,使得對任意n∈N*,總有Sn 11、用性質(zhì),可使運(yùn)算簡便.
(2)數(shù)列的項(xiàng)或前n項(xiàng)和可以看作關(guān)于n的函數(shù),然后利用函數(shù)的性質(zhì)求解數(shù)列問題.
(3)數(shù)列中的恒成立問題可以通過分離參數(shù),通過求數(shù)列的值域求解.
跟蹤演練3 已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn-1=3(an-1),n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足an+1=,若bn≤t對于任意正整數(shù)n都成立,求實(shí)數(shù)t的取值范圍.
解 (1)由已知得Sn=3an-2,令n=1,得a1=1,
又an+1=Sn+1-Sn=3an+1-3an,
得an+1=an,
所以數(shù)列{an}是以1為首項(xiàng),為公比的等比數(shù)列,
所以an=n-1( 12、n∈N*).
(2)由an+1=,
得bn==n-1
=n·n-1,
所以bn+1-bn=(n+1)·n-n·n-1
=(2-n),
所以(bn)max=b2=b3=,所以t≥.
即t的取值范圍為.
真題體驗(yàn)
1.(2017·全國Ⅰ改編)記Sn為等差數(shù)列{an}的前n項(xiàng)和.若a4+a5=24,S6=48,則{an}的公差為________.
答案 4
解析 設(shè){an}的公差為d,
由得
解得d=4.
2.(2017·浙江改編)已知等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn,則“d>0”是“S4+S6>2S5”的________條件.
答案 充要
解析 方法一 13、 ∵數(shù)列{an}是公差為d的等差數(shù)列,
∴S4=4a1+6d,S5=5a1+10d,S6=6a1+15d,
∴S4+S6=10a1+21d,2S5=10a1+20d.
若d>0,則21d>20d,10a1+21d>10a1+20d,
即S4+S6>2S5.
若S4+S6>2S5,則10a1+21d>10a1+20d,
即21d>20d,
∴d>0.∴“d>0”是“S4+S6>2S5”的充要條件.
方法二 ∵S4+S6>2S5?S4+S4+a5+a6>2(S4+a5)?a6>a5?a5+d>a5?d>0.
∴“d>0”是“S4+S6>2S5”的充要條件.
3.(2017·北京 14、)若等差數(shù)列{an}和等比數(shù)列{bn}滿足a1=b1=-1,a4=b4=8,則=________.
答案 1
解析 設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q,
則由a4=a1+3d,
得d===3,
由b4=b1q3,得q3===-8,
∴q=-2.
∴===1.
4.(2017·江蘇)等比數(shù)列{an}的各項(xiàng)均為實(shí)數(shù),其前n項(xiàng)和為Sn,已知S3=,S6=,則a8=________.
答案 32
解析 設(shè){an}的首項(xiàng)為a1,公比為q,
則解得
所以a8=×27=25=32.
押題預(yù)測
1.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1>0,a3+a10> 15、0,a6a7<0,則滿足Sn>0的最大自然數(shù)n的值為( )
A.6 B.7 C.12 D.13
押題依據(jù) 等差數(shù)列的性質(zhì)和前n項(xiàng)和是數(shù)列最基本的知識點(diǎn),也是高考的熱點(diǎn),可以考查學(xué)生靈活變換的能力.
答案 C
解析 ∵a1>0,a6a7<0,∴a6>0,a7<0,等差數(shù)列的公差小于零,又a3+a10=a1+a12>0,a1+a13=2a7<0,
∴S12>0,S13<0,
∴滿足Sn>0的最大自然數(shù)n的值為12.
2.在等比數(shù)列{an}中,a3-3a2=2,且5a4為12a3和2a5的等差中項(xiàng),則{an}的公比等于( )
A.3 B.2或3
C.2 D.6
16、押題依據(jù) 等差數(shù)列、等比數(shù)列的綜合問題可反映知識運(yùn)用的綜合性和靈活性,是高考出題的重點(diǎn).
答案 C
解析 設(shè)公比為q,5a4為12a3和2a5的等差中項(xiàng),可得10a4=12a3+2a5,10a3q=12a3+2a3q2,得10q=12+2q2,解得q=2或3.又a3-3a2=2,所以a2q-3a2=2,即a2(q-3)=2,所以q=2.
3.已知各項(xiàng)都為正數(shù)的等比數(shù)列{an}滿足a7=a6+2a5,存在兩項(xiàng)am,an使得 =4a1,則+的最小值為( )
A. B.
C. D.
押題依據(jù) 本題在數(shù)列、方程、不等式的交匯處命題,綜合考查學(xué)生應(yīng)用數(shù)學(xué)的能力,是高考命題的方向.
17、
答案 A
解析 由a7=a6+2a5,得a1q6=a1q5+2a1q4,
整理得q2-q-2=0,
解得q=2或q=-1(不合題意,舍去),
又由=4a1,得aman=16a,
即a2m+n-2=16a,即有m+n-2=4,
亦即m+n=6,那么+=(m+n)
=≥=,
當(dāng)且僅當(dāng)=,即n=2m=4時取等號.
4.定義在(-∞,0)∪(0,+∞)上的函數(shù)f(x),如果對于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(-∞,0)∪(0,+∞)上的如下函數(shù):
①f(x)=x2;②f(x)=2x;③f(x)=;④f(x)=l 18、n|x|.
則其中是“保等比數(shù)列函數(shù)”的f(x)的序號為( )
A.①② B.③④ C.①③ D.②④
押題依據(jù) 先定義一個新數(shù)列,然后要求根據(jù)定義的條件推斷這個新數(shù)列的一些性質(zhì)或者判斷一個數(shù)列是否屬于這類數(shù)列的問題是近年來高考中逐漸興起的一類問題,這類問題一般形式新穎,難度不大,常給人耳目一新的感覺.
答案 C
解析 由等比數(shù)列的性質(zhì)得,anan+2=a.
①f(an)f(an+2)=aa=(a)2=[f(an+1)]2;
②f(an)f(an+2)==≠=[f(an+1)]2;
③f(an)f(an+2)===[f(an+1)]2;
④f(an)f(an+2)=l 19、n|an|ln|an+2|≠(ln|an+1|)2=[f(an+1)]2.
A組 專題通關(guān)
1.(2018·大慶質(zhì)檢)已知等差數(shù)列{an}中,a4=9,S4=24,則a7等于( )
A.3 B.7 C.13 D.15
答案 D
解析 由于數(shù)列為等差數(shù)列,依題意得
解得d=2,所以a7=a4+3d=9+6=15.
2.(2018·淮北模擬)已知等比數(shù)列{an}中,a5=2,a6a8=8,則等于( )
A.2 B.4 C.6 D.8
答案 A
解析 ∵數(shù)列{an}是等比數(shù)列,∴a6a8=a=8,a7=2(與a5同號),∴q2==,
從而=q4=()2=2. 20、
3.(2018·株洲質(zhì)檢)已知等差數(shù)列{an}的公差為2,若a1,a3,a4成等比數(shù)列,Sn是{an}的前n項(xiàng)和,則S9等于( )
A.-8 B.-6 C.0 D.10
答案 C
解析 ∵a1,a3,a4成等比數(shù)列,
∴a=a1a4,
∴(a1+2×2)2=a1·(a1+3×2),化為2a1=-16,
解得a1=-8,則S9=-8×9+×2=0.
4.一個等比數(shù)列的前三項(xiàng)的積為2,最后三項(xiàng)的積為4,且所有項(xiàng)的積為64,則該數(shù)列的項(xiàng)數(shù)是( )
A.13 B.12
C.11 D.10
答案 B
解析 設(shè)等比數(shù)列為{an},其前n項(xiàng)積為Tn,由已知得a1a 21、2a3=2,anan-1an-2=4,可得(a1an)3=2×4,a1an=2,
∵Tn=a1a2…an,∴T=(a1a2…an)2
=(a1an)(a2an-1)…(ana1)=(a1an)n=2n=642=212,
∴n=12.
5.(2018·荊州質(zhì)檢)已知數(shù)列{an}滿足5=25·,且a2+a4+a6=9,則(a5+a7+a9)等于( )
A.-3 B.3 C.- D.
答案 A
解析 ∵=25·=,
∴an+1=an+2,
∴數(shù)列{an}是等差數(shù)列,且公差為2.
∵a2+a4+a6=9,
∴3a4=9,a4=3.
∴l(xiāng)og(a5+a7+a9)=log3 22、a7=log3(a4+6)=log27=-3.
6.(2018·資陽模擬)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a1=9,a5=1,則使得Sn>0成立的最大的自然數(shù)n為________.
答案 9
解析 因?yàn)閍1=9,a5=1,所以d==-2,
所以Sn=9n+n(n-1)(-2)>0,即n<10,
因此使得Sn>0成立的最大的自然數(shù)n為9.
7.(2018·石嘴山模擬)在正項(xiàng)等比數(shù)列{an}中,若a1,a3,2a2成等差數(shù)列,則=________.
答案 3+2
解析 由于a1,a3,2a2成等差數(shù)列,
所以a3=a1+2a2,
即a1q2=a1+2a1q,q2-2q-1 23、=0,
解得q=+1或q=1-(舍去).
故=q2=3+2.
8.已知數(shù)列{an}滿足a1=2,且an=(n≥2,n∈N*),則an=________.
答案
解析 由an=,得=+,
于是-1=(n≥2,n∈N*).
又-1=-,
∴數(shù)列是以-為首項(xiàng),為公比的等比數(shù)列,故-1=-,
∴an=(n∈N*).
9.意大利數(shù)學(xué)家列昂那多·斐波那契以兔子繁殖為例,引入“兔子數(shù)列”:1,1,2,3,5,8,13,21,34,55,89,144,233,…,即F(1)=F(2)=1,F(xiàn)(n)=F(n-1)+F(n-2)(n≥3,n∈N*),此數(shù)列在現(xiàn)代物理、準(zhǔn)晶體結(jié)構(gòu)、化學(xué)等領(lǐng)域都 24、有著廣泛的應(yīng)用,若此數(shù)列被3整除后的余數(shù)構(gòu)成一個新數(shù)列,則b2 017=________.
答案 1
解析 由題意得引入“兔子數(shù)列”:1,1,2,3,5,8,13,21,34,55,89,144,233,…,
此數(shù)列被3 整除后的余數(shù)構(gòu)成一個新數(shù)列為1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,…,
構(gòu)成以8項(xiàng)為周期的周期數(shù)列,所以b2 017=b1=1.
10.(2018·天津)設(shè){an}是等差數(shù)列,其前n項(xiàng)和為Sn(n∈N*);{bn}是等比數(shù)列,公比大于0,其前n項(xiàng)和為Tn(n∈N*),已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.
( 25、1)求Sn和Tn;
(2)若Sn+(T1+T2+…+Tn)=an+4bn,求正整數(shù)n的值.
解 (1)設(shè)等比數(shù)列{bn}的公比為q(q>0).
由b1=1,b3=b2+2,可得q2-q-2=0.
因?yàn)閝>0,可得q=2,故bn=2n-1.
所以Tn==2n-1(n∈N*).
設(shè)等差數(shù)列{an}的公差為d.
由b4=a3+a5,可得a1+3d=4.
由b5=a4+2a6,可得3a1+13d=16,從而a1=1,d=1,
故an=n,所以Sn=(n∈N*).
(2)由(1),有
T1+T2+…+Tn=(21+22+…+2n)-n=-n=2n+1-n-2.
由Sn+(T1+T 26、2+…+Tn)=an+4bn,可得
+2n+1-n-2=n+2n+1,
整理得n2-3n-4=0,
解得n=-1(舍去)或n=4.
所以n的值為4.
B組 能力提高
11.?dāng)?shù)列{an}是以a為首項(xiàng),b為公比的等比數(shù)列,數(shù)列{bn}滿足bn=1+a1+a2+…+an(n=1,2,…),數(shù)列滿足cn=2+b1+b2+…+bn(n=1,2,…),若為等比數(shù)列,則a+b等于( )
A. B.3 C. D.6
答案 B
解析 由題意知,當(dāng)b=1時,{cn}不是等比數(shù)列,
所以b≠1.由an=abn-1,
得bn=1+=1+-,
則cn=2+n-·
=2-+n+,
要使 27、為等比數(shù)列,必有
得a+b=3.
12.艾薩克·牛頓(1643年1月4日-1727年3月31日)是英國皇家學(xué)會會長,英國著名物理學(xué)家,同時在數(shù)學(xué)上也有許多杰出貢獻(xiàn),牛頓用“作切線”的方法求函數(shù)f(x)的零點(diǎn)時給出一個數(shù)列滿足xn+1=xn-,我們把該數(shù)列稱為牛頓數(shù)列.如果函數(shù)f(x)=ax2+bx+c(a>0)有兩個零點(diǎn)1,2,數(shù)列為牛頓數(shù)列,設(shè)an=ln ,已知a1=2,xn>2,則{an}的通項(xiàng)公式an=________.
答案 2n
解析 ∵ 函數(shù)f(x)=ax2+bx+c(a>0)有兩個零點(diǎn)1,2,
∴ 解得
∴f(x)=ax2-3ax+2a,
則f′(x)=2ax-3 28、a.
則xn+1=xn-
=xn-=,
∴=
==2,
則數(shù)列{an}是以2為公比的等比數(shù)列,
又∵a1=2,
∴數(shù)列{an}是以2為首項(xiàng),以2為公比的等比數(shù)列,
則an=2·2n-1=2n.
13.(2018·攀枝花統(tǒng)考)記m=,若是等差數(shù)列,則稱m為數(shù)列{an}的“dn等差均值”;若是等比數(shù)列,則稱m為數(shù)列{an}的“dn等比均值”.已知數(shù)列{an}的“2n-1等差均值”為2,數(shù)列{bn}的“3n-1等比均值”為3.記cn=+klog3bn,數(shù)列的前n項(xiàng)和為Sn,若對任意的正整數(shù)n都有Sn≤S6,則實(shí)數(shù)k的取值范圍是________.
答案
解析 由題意得2=,
29、所以a1+3a2+…+(2n-1)an=2n,
所以a1+3a2+…+(2n-3)an-1=2n-2(n≥2,n∈N*),
兩式相減得an=(n≥2,n∈N*).
當(dāng)n=1時,a1=2,符合上式,
所以an=(n∈N*).
又由題意得3=,
所以b1+3b2+…+3n-1bn=3n,
所以b1+3b2+…+3n-2bn-1=3n-3(n≥2,n∈N*),
兩式相減得bn=32-n(n≥2,n∈N*).
當(dāng)n=1時,b1=3,符合上式,
所以bn=32-n(n∈N*).
所以cn=(2-k)n+2k-1.
因?yàn)閷θ我獾恼麛?shù)n都有Sn≤S6,
所以解得≤k≤.
14. 30、設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,a=(a1,1),b=(1,a10),若a·b=24,且S11=143,數(shù)列{bn}的前n項(xiàng)和為Tn,且滿足=λTn-(a1-1)(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式及數(shù)列的前n項(xiàng)和Mn;
(2)是否存在非零實(shí)數(shù)λ,使得數(shù)列{bn}為等比數(shù)列?并說明理由.
解 (1)設(shè)數(shù)列{an}的公差為d,
由a=(a1,1),b=(1,a10),a·b=24,
得a1+a10=24,又S11=143,解得a1=3,d=2,
因此數(shù)列{an}的通項(xiàng)公式是an=2n+1(n∈N*),
所以==,
所以Mn=
=(n∈N*).
(2)因?yàn)椋溅薚n-(a1-1)(n∈N*),且a1=3,
所以Tn=+,
當(dāng)n=1時,b1=;
當(dāng)n≥2時,bn=Tn-Tn-1=,
此時有=4,若{bn}是等比數(shù)列,
則有=4,而b1=,b2=,彼此相矛盾,
故不存在非零實(shí)數(shù)λ使數(shù)列{bn}為等比數(shù)列.
15
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第七章-透射電子顯微鏡
- 群落的結(jié)構(gòu)(課件)
- 焊接基礎(chǔ)知識
- 水文地質(zhì)學(xué)課件
- 某公司員工工傷安全管理規(guī)定
- 消防培訓(xùn)課件:安全檢修(要點(diǎn))
- 某公司安全生產(chǎn)考核與獎懲辦法范文
- 安全作業(yè)活動安全排查表
- 某公司危險源安全辨識、分類和風(fēng)險評價、分級辦法
- 某公司消防安全常識培訓(xùn)資料
- 安全培訓(xùn)資料:危險化學(xué)品的類別
- 中小學(xué)寒假學(xué)習(xí)計劃快樂度寒假充實(shí)促成長
- 紅色插畫風(fēng)輸血相關(guān)知識培訓(xùn)臨床輸血流程常見輸血不良反應(yīng)
- 14.應(yīng)急救援隊(duì)伍訓(xùn)練記錄
- 某公司各部門及人員安全生產(chǎn)責(zé)任制