《2022年中考數(shù)學(xué)專(zhuān)題復(fù)習(xí) 分類(lèi)練習(xí) 二次函數(shù)壓軸題》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2022年中考數(shù)學(xué)專(zhuān)題復(fù)習(xí) 分類(lèi)練習(xí) 二次函數(shù)壓軸題(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年中考數(shù)學(xué)專(zhuān)題復(fù)習(xí) 分類(lèi)練習(xí) 二次函數(shù)壓軸題
1.已知二次函數(shù)y=x2-(a-1)x+a-2,其中a是常數(shù).
(1)求證:不論a為何值,該二次函數(shù)的圖象與x軸一定有公共點(diǎn);
(2)當(dāng)a=4時(shí),該二次函數(shù)的圖象頂點(diǎn)為A,與x軸交于B,D兩點(diǎn),與y軸交于C點(diǎn),求四邊形ABCD的面積.
2.已知拋物線(xiàn)y=x2+1如圖所示
(1)填空:拋物線(xiàn)的頂點(diǎn)坐標(biāo)是( , ),對(duì)稱(chēng)軸是 ;
(2)如圖,已知y軸上一點(diǎn)A(0,2),點(diǎn)P在拋物線(xiàn)上,過(guò)點(diǎn)P作PB⊥x軸,垂足為B.若△PAB是等邊三角形,求點(diǎn)P的坐標(biāo);
(3)如圖,在第
2、二問(wèn)的基礎(chǔ)上,在拋物線(xiàn)有一點(diǎn)C(x,y),連接AC、OC、BC、PC,當(dāng)△OAC的面積等于△BCP的面積時(shí),求C的橫坐標(biāo).
3.已知二次函數(shù)是常數(shù).
(1)求該函數(shù)圖像的頂點(diǎn)C的坐標(biāo)用含的代數(shù)式表示;
(2)當(dāng)為何值時(shí),函數(shù)圖像的頂點(diǎn)C在第二、四象限的角平分線(xiàn)上?
4.已知二次函數(shù)為常數(shù),且的圖像與x軸交于A,B兩點(diǎn)點(diǎn)A在點(diǎn)B的左側(cè),與y軸交于點(diǎn)C,其頂點(diǎn)為D.
(1)求點(diǎn)A,B的坐標(biāo);
(2)過(guò)點(diǎn)D作x軸的垂線(xiàn),垂足為E.若△CBO與△DAE相似O為坐標(biāo)原點(diǎn),試討論與的關(guān)系;
(3)在同一直角坐標(biāo)系
3、中,若該二次函數(shù)的圖像與二次函數(shù)的圖像組合成一個(gè)新的圖像,則這個(gè)新圖形的對(duì)稱(chēng)軸為 .
5.閱讀材料,解答問(wèn)題.
例 用圖像法解一元二次不等式:x2-2x-3>0.
解:設(shè)y=x2-2x-3,則y是x的二次函數(shù).
∵a=1>0,∴拋物線(xiàn)開(kāi)口向上,
又∵當(dāng)y=0時(shí),x2-2x-3=0,解得x1=-1,x2=3.
∴由此得拋物線(xiàn)y=x2-2x-3的大致圖像如圖12所示,
觀(guān)察函數(shù)圖像可知:當(dāng)x<-1或x>3時(shí),y>0.
∴x2-2x-3>0的解集是:x<-1或x>3.
(1)觀(guān)察圖像,直接
4、寫(xiě)出一元二次不等式:x2-2x-3<0的解集是________.
(2)仿照上例,用圖像法解一元二次不等式:x2-1>0.
6.如圖①已知拋物線(xiàn)y=ax2﹣3ax﹣4a(a<0)的圖象與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y的正半軸交于點(diǎn)C,連結(jié)BC,二次函數(shù)的對(duì)稱(chēng)軸與x軸的交點(diǎn)E.
(1)拋物線(xiàn)的對(duì)稱(chēng)軸與x軸的交點(diǎn)E坐標(biāo)為 ,點(diǎn)A的坐標(biāo)為 ;
(2)若以E為圓心的圓與y軸和直線(xiàn)BC都相切,試求出拋物線(xiàn)的解析式;
(3)在(2)的條件下,如圖②Q(m,0)是x的正半軸上一點(diǎn),過(guò)點(diǎn)Q作y軸的平行線(xiàn),與直線(xiàn)BC交于點(diǎn)M,與
5、拋物線(xiàn)交于點(diǎn)N,連結(jié)CN,將△CMN沿CN翻折,M的對(duì)應(yīng)點(diǎn)為M′.在圖②中探究:是否存在點(diǎn)Q,使得M′恰好落在y軸上?若存在,請(qǐng)求出Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
7.在平面直角坐標(biāo)系中,拋物線(xiàn)經(jīng)過(guò)點(diǎn)和點(diǎn).
(1)求該拋物線(xiàn)的表達(dá)式;
(2)求直線(xiàn)關(guān)于軸的對(duì)稱(chēng)直線(xiàn)的表達(dá)式;
(3)點(diǎn)是軸上的動(dòng)點(diǎn),過(guò)點(diǎn)作垂直于軸的直線(xiàn),直線(xiàn)與該拋物線(xiàn)交于點(diǎn),與直線(xiàn)交于點(diǎn).當(dāng)時(shí),求點(diǎn)的橫坐標(biāo)的取值范圍.
8.研究發(fā)現(xiàn),拋物線(xiàn)上的點(diǎn)到點(diǎn)F(0,1)的距離與到直線(xiàn)l:的距離相等.如圖1所示,若點(diǎn)P是拋物線(xiàn)上任意一點(diǎn),PH⊥
6、l于點(diǎn)H,則.
基于上述發(fā)現(xiàn),對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)M,記點(diǎn)到點(diǎn)的距離與點(diǎn)到點(diǎn)的距離之和的最小值為d,稱(chēng)d為點(diǎn)M關(guān)于拋物線(xiàn)的關(guān)聯(lián)距離;當(dāng)時(shí),稱(chēng)點(diǎn)M為拋物線(xiàn)的關(guān)聯(lián)點(diǎn).
(1)在點(diǎn),,,中,拋物線(xiàn)的關(guān)聯(lián)點(diǎn)是______ ;
(2)如圖2,在矩形ABCD中,點(diǎn),點(diǎn)C( t.
①若t=4,點(diǎn)M在矩形ABCD上,求點(diǎn)M關(guān)于拋物線(xiàn)的關(guān)聯(lián)距離d的取值范圍;
②若矩形ABCD上的所有點(diǎn)都是拋物線(xiàn)的關(guān)聯(lián)點(diǎn),則t的取值范圍是__________.
9.在平面直角坐標(biāo)系中,已知點(diǎn),,,其中,以點(diǎn)為頂點(diǎn)的平行四邊形有三個(gè),記第四個(gè)頂點(diǎn)分別為,如圖所示.
(1)若,則點(diǎn)的坐標(biāo)分別是
7、( ),( ),( );
(2)是否存在點(diǎn),使得點(diǎn)在同一條拋物線(xiàn)上?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
10.如圖1,在平面直角坐標(biāo)系中,點(diǎn)B在x軸正半軸上,OB的長(zhǎng)度為2m,以O(shè)B為邊向上作等邊三角形AOB,拋物線(xiàn)l:y=ax2+bx+c經(jīng)過(guò)點(diǎn)O,A,B三點(diǎn).
(1)當(dāng)m=2時(shí),a= ,當(dāng)m=3時(shí),a= ;
(2)根據(jù)(1)中的結(jié)果,猜想a與m的關(guān)系,并證明你的結(jié)論;
(3)如圖2,在圖1的基礎(chǔ)上,作x軸的平行線(xiàn)交拋物線(xiàn)l于P、Q兩點(diǎn),PQ的長(zhǎng)度為2n,當(dāng)△APQ為等
8、腰直角三角形時(shí),a和n的關(guān)系式為 a= ;
(4)利用(2)(3)中的結(jié)論,求△AOB與△APQ的面積比.
11.如圖,拋物線(xiàn)與x軸交于、B兩點(diǎn),與y軸交于點(diǎn),拋物線(xiàn)的對(duì)稱(chēng)軸交x軸于點(diǎn)D.
求拋物線(xiàn)的解析式;
求的值;
在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使是以CD為腰的等腰三角形?如果存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
點(diǎn)E是線(xiàn)段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線(xiàn)與拋物線(xiàn)相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí)線(xiàn)段EF最長(zhǎng)?求出此時(shí)E點(diǎn)的坐標(biāo).
12.如圖,二次函數(shù)的圖像與軸交于、兩點(diǎn),與軸交于點(diǎn),已
9、知點(diǎn),點(diǎn).
(1)求拋物線(xiàn)的函數(shù)解析式,并求出該拋物線(xiàn)的頂點(diǎn)坐標(biāo);
(2)若點(diǎn)是拋物線(xiàn)在第一象限的部分上的一動(dòng)點(diǎn),
①當(dāng)四邊形的面積最大時(shí),求點(diǎn)的坐標(biāo);
②若為的中點(diǎn),的延長(zhǎng)線(xiàn)交線(xiàn)段于點(diǎn),當(dāng)為鈍角三角形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)的縱坐標(biāo)的范圍.
13.如圖,拋物線(xiàn)y=x2+bx﹣2與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且A(﹣1,0).
(1)求拋物線(xiàn)的解析式及頂點(diǎn)D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點(diǎn)M(m,0)是x軸上的
10、一個(gè)動(dòng)點(diǎn),當(dāng)MC+MD的值最小時(shí),求m的值.
14.如圖1,已知直線(xiàn)y=kx與拋物線(xiàn)y=交于點(diǎn)A(3,6).
(1)求直線(xiàn)y=kx的解析式和線(xiàn)段OA的長(zhǎng)度;
(2)點(diǎn)P為拋物線(xiàn)第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線(xiàn)PM,交x軸于點(diǎn)M(點(diǎn)M、O不重合),交直線(xiàn)OA于點(diǎn)Q,再過(guò)點(diǎn)Q作直線(xiàn)PM的垂線(xiàn),交y軸于點(diǎn)N.試探究:線(xiàn)段QM與線(xiàn)段QN的長(zhǎng)度之比是否為定值?如果是,求出這個(gè)定值;如果不是,說(shuō)明理由;
(3)如圖2,若點(diǎn)B為拋物線(xiàn)上對(duì)稱(chēng)軸右側(cè)的點(diǎn),點(diǎn)E在線(xiàn)段OA上(與點(diǎn)O、A不重合),點(diǎn)D(m,0)是x軸正半軸上的動(dòng)點(diǎn),且滿(mǎn)足∠BAE=∠BED=
11、∠AOD.繼續(xù)探究:m在什么范圍時(shí),符合條件的E點(diǎn)的個(gè)數(shù)分別是1個(gè)、2個(gè)?
15.如圖,二次函數(shù)y=ax2+x+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,已知點(diǎn)A(﹣1,0),點(diǎn)C(0,2).
(1)求拋物線(xiàn)的函數(shù)解析式,并求出該拋物線(xiàn)的頂點(diǎn)坐標(biāo);
(2)若點(diǎn)D是拋物線(xiàn)在第一象限的部分上的一動(dòng)點(diǎn),
①當(dāng)四邊形OCDB的面積最大時(shí),求點(diǎn)D的坐標(biāo);
②若E為BC的中點(diǎn),DE的延長(zhǎng)線(xiàn)交線(xiàn)段AB于點(diǎn)F,當(dāng)△BEF為鈍角三角形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)D的縱坐標(biāo)y的范圍.
16.在平面直角坐標(biāo)系中,點(diǎn)、的橫坐標(biāo)分別為、,二次函數(shù)的圖像經(jīng)過(guò)點(diǎn)、,且滿(mǎn)足(為常數(shù)).
(1)若一次函數(shù)的圖像經(jīng)過(guò)、兩點(diǎn).
①當(dāng)、時(shí),求的值;
②若隨的增大而減小,求的取值范圍.
(2)當(dāng)且、時(shí),判斷直線(xiàn)與軸的位置關(guān)系,并說(shuō)明理由;
(3)點(diǎn)、的位置隨著的變化而變化,設(shè)點(diǎn)、運(yùn)動(dòng)的路線(xiàn)與軸分別相交于點(diǎn)、,線(xiàn)段的長(zhǎng)度會(huì)發(fā)生變化嗎?如果不變,求出的長(zhǎng);如果變化,請(qǐng)說(shuō)明理由.