購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見(jiàn)即所得,都可以點(diǎn)開(kāi)預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。。。具體請(qǐng)見(jiàn)文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
黑龍江工程學(xué)院本科生畢業(yè)設(shè)計(jì)
摘 要
汽車在行駛的過(guò)程中,需要按照駕駛員的意志經(jīng)常改變其行駛方向,即所謂的汽車轉(zhuǎn)向。汽車的轉(zhuǎn)向系統(tǒng)是一套用來(lái)改變或恢復(fù)汽車行駛方向的專用機(jī)構(gòu),本文的研究?jī)?nèi)容即是輕型貨車的轉(zhuǎn)向系統(tǒng)設(shè)計(jì)。
本文針對(duì)的是與非獨(dú)立懸架相匹配的整體式兩輪轉(zhuǎn)向機(jī)構(gòu)。利用相關(guān)汽車設(shè)計(jì)和連桿機(jī)構(gòu)運(yùn)動(dòng)學(xué)的知識(shí),首先對(duì)轉(zhuǎn)向器,轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)進(jìn)行選擇,接著再對(duì)轉(zhuǎn)向器和轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)進(jìn)行設(shè)計(jì),最后,利用軟件AUTOCAD完成轉(zhuǎn)向系統(tǒng)的設(shè)計(jì)圖紙。
轉(zhuǎn)向器在設(shè)計(jì)中選用的是循環(huán)球式齒條齒扇轉(zhuǎn)向器,在對(duì)轉(zhuǎn)向器的設(shè)計(jì)中,包括了螺桿—鋼球—螺母?jìng)鲃?dòng)副的設(shè)計(jì)和齒條—齒扇傳動(dòng)副的設(shè)計(jì),前者是基于參照同類汽車,確定出鋼球中心距,設(shè)計(jì)出一系列的尺寸,而后者則是根據(jù)汽車前軸的載荷來(lái)確定出齒扇模數(shù),再由此設(shè)計(jì)出所有參數(shù)的。
轉(zhuǎn)向梯形的設(shè)計(jì)選用的是整體式轉(zhuǎn)向梯形,本文在設(shè)計(jì)中借鑒同類汽車轉(zhuǎn)向梯形設(shè)計(jì)的經(jīng)驗(yàn)尺寸對(duì)轉(zhuǎn)向梯形進(jìn)行尺寸初選。再通過(guò)對(duì)轉(zhuǎn)向內(nèi)輪實(shí)際達(dá)到的最大偏轉(zhuǎn)角時(shí)與轉(zhuǎn)向外輪理想最大偏轉(zhuǎn)角度的差值的檢驗(yàn),和作為一個(gè)四桿機(jī)構(gòu)對(duì)其最小傳動(dòng)角的檢驗(yàn),來(lái)判定轉(zhuǎn)向梯形的設(shè)計(jì)是否符合基本要求。
本文在消化,吸收,總結(jié),歸納前人的成果上,系統(tǒng)、全面地對(duì)機(jī)械轉(zhuǎn)向系進(jìn)行理論分析,設(shè)計(jì)及優(yōu)化。為輕型汽車轉(zhuǎn)向系的設(shè)計(jì)開(kāi)發(fā)提供了一種步驟簡(jiǎn)單的設(shè)計(jì)方法。
關(guān)鍵詞:轉(zhuǎn)向系;轉(zhuǎn)向器;轉(zhuǎn)向梯形;傳動(dòng)副;結(jié)構(gòu)元件
ABSTRACT
In a moving vehicle, the driver will need to frequently change its traveling direction, the so-called steering. Vehicle steering system is used to change or restore a car in the direction of a dedicated agency, the contents of this paper is the study of light vehicle steering system design.
This article is aimed at non-independent suspension and would like to match the overall style of the two steering. The use of the relevant vehicle design and kinematic linkage of knowledge, first of all, the steering gear, steering transmission choice, and then to the steering gear and steering transmission (mainly trapezoidal steering ) design, and finally, the use of AUTOCAD software and the Steering system to complete the design drawings.
Steering the ball of choice is the cycle of fan-type steering gear rack teeth, in the design of steering gear, including a screw - Ball - Vice-nut drive the design and rack - fan drive gear pair design, the former is based on the reference to similar vehicles, to determine the center distance of the ball, the design of a series of size, while the latter is based on the vehicle front axle load to determine the fan module out of gear, and then all of the resulting design parameters.
Steering linkage design is a whole selection of steering trapezoid, the paper design is used in car steering linkage from a similar experience in the design of the size of the steering linkage to the primary size. Through to the actual steering wheel in the maximum deflection angle with the steering wheel in the most ideal test of the difference of deflection angle, and four institutions, as a minimum transmission angle of its examination, to determine whether the design of steering trapezoid in line with the basic requirements.
In this paper, digestion, absorption, and summing up, summing up the results of their predecessors, the systematic, comprehensive mechanical steering system to carry out theoretical analysis, design and optimization. For the light vehicle steering system design and development provides a simple design method steps.
key words:Steering system;Steering gear;Steering trapezium;Transmission vice;Structural components
III
黑龍江工程學(xué)院本科生畢業(yè)設(shè)計(jì) 目 錄 摘要...................................................................................................................................Ⅰ Abstract.............................................................................................................................Ⅱ 第 1 章 緒論 .................................................................................................................1 1.1 轉(zhuǎn)向系概述..........................................................................................................1 1.2 汽車轉(zhuǎn)向系統(tǒng)的現(xiàn)狀及發(fā)展趨勢(shì)......................................................................1 第 2 章 汽車轉(zhuǎn)向系方案的設(shè)計(jì)..............................................................................5 2.1 轉(zhuǎn)向系主要性能參數(shù).........................................................................................5 2.1.1 轉(zhuǎn)向器的效率...........................................................................................5 2.1.2 傳動(dòng)比的變化特性 .................................................................................7 2.1.3 轉(zhuǎn)向器傳動(dòng)副的傳動(dòng)間隙......................................................................10 2.1.4 轉(zhuǎn)向盤的總轉(zhuǎn)動(dòng)圈數(shù)..............................................................................10 2.2 轉(zhuǎn)向系的選擇.....................................................................................................10 2.2.1 機(jī)械轉(zhuǎn)向系..............................................................................................10 2.2.2 動(dòng)力轉(zhuǎn)向系..............................................................................................12 第 3 章 汽車轉(zhuǎn)向器方案的設(shè)計(jì).............................................................................14 3.1 機(jī)械式轉(zhuǎn)向器的選擇.........................................................................................14 3.1.1 齒輪齒條式轉(zhuǎn)向器..................................................................................14 3.1.2 循環(huán)球式轉(zhuǎn)向器......................................................................................14 3.1.3 蝸桿滾輪式轉(zhuǎn)向器..................................................................................15 3.1.4 蝸桿指銷式轉(zhuǎn)向器..................................................................................16 第 4 章 汽車轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的設(shè)計(jì).........................................................................17 4.1 轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的選擇.........................................................................................17 4.1.1 與非獨(dú)立懸架配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)......................................................17 4.1.2 與獨(dú)立懸架配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)..........................................................18 4.2 轉(zhuǎn)向梯形的選擇.................................................................................................20 黑龍江工程學(xué)院本科生畢業(yè)設(shè)計(jì) 4.2.1 整體式轉(zhuǎn)向梯形....................................................................................20 4.2.2 斷開(kāi)式轉(zhuǎn)向梯形....................................................................................21 第 5 章 轉(zhuǎn)向系的設(shè)計(jì)計(jì)算.....................................................................................23 5.1 轉(zhuǎn)向器的結(jié)構(gòu)型式選擇及其設(shè)計(jì)計(jì)算...........................................................23 5.1.1 螺桿—鋼球—螺母?jìng)鲃?dòng)副的設(shè)計(jì)........................................................23 5.1.2 齒條、齒扇傳動(dòng)副的設(shè)計(jì)....................................................................27 5.1.3 循環(huán)球式轉(zhuǎn)向器零件強(qiáng)度計(jì)算............................................................32 5.2 整體式轉(zhuǎn)向梯形結(jié)構(gòu)優(yōu)化設(shè)計(jì).......................................................................36 5.3 轉(zhuǎn)向系結(jié)構(gòu)元件...............................................................................................41 結(jié)論.................................................................................................................................44 參考文獻(xiàn)........................................................................................................................45 致謝.................................................................................................................................46 附錄.................................................................................................................................47 黑龍江工程學(xué)院本科生畢業(yè)設(shè)計(jì)
第1章 緒 論
1.1轉(zhuǎn)向系概述
轉(zhuǎn)向系是用來(lái)保持或者改變汽車行駛方向的機(jī)構(gòu),在汽車轉(zhuǎn)向行駛時(shí),保證各轉(zhuǎn)向輪之間有協(xié)調(diào)的轉(zhuǎn)角關(guān)系。
機(jī)械轉(zhuǎn)向系依靠駕駛員的手力轉(zhuǎn)動(dòng)轉(zhuǎn)向盤,經(jīng)轉(zhuǎn)向器和轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)使轉(zhuǎn)向輪偏轉(zhuǎn)。有些汽車還裝有防傷機(jī)構(gòu)和轉(zhuǎn)向減振器。采用動(dòng)力轉(zhuǎn)向的汽車,還裝有動(dòng)力系統(tǒng),并借助此系統(tǒng)來(lái)減輕駕駛員的手力。
對(duì)轉(zhuǎn)向系提出的要求有:
1)汽車轉(zhuǎn)彎行駛時(shí),理想情況下全部車輪應(yīng)繞瞬時(shí)轉(zhuǎn)向中心旋轉(zhuǎn),任何車輪不應(yīng)有側(cè)滑。否則會(huì)加速輪胎磨損,并降低汽車的行駛穩(wěn)定性;
2)汽車轉(zhuǎn)向行駛后,在駕駛員松開(kāi)轉(zhuǎn)向盤的條件下,轉(zhuǎn)向輪能自動(dòng)返回到直線行駛位置,并穩(wěn)定行駛;
3)汽車在任何行駛狀態(tài)下,轉(zhuǎn)向輪都不得產(chǎn)生自振,轉(zhuǎn)向盤沒(méi)有擺動(dòng);
4)轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)和懸架導(dǎo)向裝置共同工作時(shí),由于運(yùn)動(dòng)不協(xié)調(diào)使車輪產(chǎn)生的擺動(dòng)應(yīng)最?。?
5) 保證汽車有較高的機(jī)動(dòng)性,具有迅速和小轉(zhuǎn)彎行駛能力;
6) 操縱輕便;
7) 轉(zhuǎn)向輪碰撞到障礙物以后,傳給轉(zhuǎn)向盤的反沖力要盡可能??;
8) 轉(zhuǎn)向器和轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的球頭處,有消除因磨損而產(chǎn)生間隙的調(diào)整機(jī)構(gòu);
9) 在車禍中,當(dāng)轉(zhuǎn)向軸和轉(zhuǎn)向盤由于車架或車身變形而共同后移時(shí)轉(zhuǎn)向系應(yīng)有能使駕駛員免遭或減輕傷害的防傷裝置;
10) 進(jìn)行運(yùn)動(dòng)校核,保證轉(zhuǎn)向輪與轉(zhuǎn)向盤轉(zhuǎn)動(dòng)方向一致。
1.2汽車轉(zhuǎn)向系統(tǒng)的現(xiàn)狀及發(fā)展趨勢(shì)
作為汽車的一個(gè)重要組成部分, 汽車轉(zhuǎn)向系統(tǒng)是決定汽車主動(dòng)安全性的關(guān)鍵總成,如何設(shè)計(jì)汽車的轉(zhuǎn)向特性, 使汽車具有良好的操縱性能, 始終是各汽車生產(chǎn)廠家和科研機(jī)構(gòu)的重要研究課題。特別是在車輛高速化、駕駛?cè)藛T非職業(yè)化、車流密集化的今天, 針對(duì)更多不同水平的駕駛?cè)巳? 汽車的操縱設(shè)計(jì)顯得尤為重要。汽車轉(zhuǎn)向系統(tǒng)經(jīng)歷了純機(jī)械式轉(zhuǎn)向系統(tǒng)、液壓助力轉(zhuǎn)向系統(tǒng)、電動(dòng)助力轉(zhuǎn)向系統(tǒng)3 個(gè)基本發(fā)展階段。
1.2.1 純機(jī)械式轉(zhuǎn)向系統(tǒng)
機(jī)械式的轉(zhuǎn)向系統(tǒng), 由于采用純粹的機(jī)械解決方案, 為了產(chǎn)生足夠大的轉(zhuǎn)向扭矩需要使用大直徑的轉(zhuǎn)向盤, 這樣一來(lái), 占用駕駛室的空間很大, 整個(gè)機(jī)構(gòu)顯得比較笨拙, 駕駛員負(fù)擔(dān)較重, 特別是重型汽車由于轉(zhuǎn)向阻力較大,單純靠駕駛員的轉(zhuǎn)向力很難實(shí)現(xiàn)轉(zhuǎn)向, 這就大大限制了其使用范圍。但因結(jié)構(gòu)簡(jiǎn)單、工作可靠、造價(jià)低廉, 目前在一部分轉(zhuǎn)向操縱力不大、對(duì)操控性能要求不高的微型轎車、農(nóng)用車上仍有使用。
1.2.2 液壓助力轉(zhuǎn)向系統(tǒng)
1953 年通用汽車公司首次使用了液壓助力轉(zhuǎn)向系統(tǒng), 此后該技術(shù)迅速發(fā)展, 使得動(dòng)力轉(zhuǎn)向系統(tǒng)在體積、功率消耗和價(jià)格等方面都取得了很大的進(jìn)步。80 年代后期, 又出現(xiàn)了變減速比的液壓動(dòng)力轉(zhuǎn)向系統(tǒng)。在接下來(lái)的數(shù)年內(nèi), 動(dòng)力轉(zhuǎn)向系統(tǒng)的技術(shù)革新差不多都是基于液壓轉(zhuǎn)向系統(tǒng), 比較有代表性的是變流量泵液壓動(dòng)力轉(zhuǎn)向系統(tǒng)( Variable Displacement Power Steering Pump) 和電動(dòng)液壓助力轉(zhuǎn)向( Electric Hydraulic PowerSteering, 簡(jiǎn)稱EHPS) 系統(tǒng)。變流量泵助力轉(zhuǎn)向系統(tǒng)在汽車處于比較高的行駛速度或者不需要轉(zhuǎn)向的情況下, 泵的流量會(huì)相應(yīng)地減少, 從而有利于減少不必要的功耗電動(dòng)液壓轉(zhuǎn)向系統(tǒng)采用電動(dòng)機(jī)驅(qū)動(dòng)轉(zhuǎn)向泵, 由于電機(jī)的轉(zhuǎn)速可調(diào), 可以即時(shí)關(guān)閉, 所以也能夠起到降低功耗的功效。液壓助力轉(zhuǎn)向系統(tǒng)使駕駛室變得寬敞, 布置更方便, 降低了轉(zhuǎn)向操縱力, 也使轉(zhuǎn)向系統(tǒng)更為靈敏。由于該類轉(zhuǎn)向系統(tǒng)技術(shù)成熟、能提供大的轉(zhuǎn)向操縱助力, 目前在部分乘用車、大部分商用車特別是重型車輛上廣泛應(yīng)用。但是液壓助力轉(zhuǎn)向系統(tǒng)在系統(tǒng)布置、安裝、密封性、操縱靈敏度、能量消耗、磨損與噪聲等方面存在不足。
1.2.3 汽車電動(dòng)助力轉(zhuǎn)向系統(tǒng)(EPS)
EPS 在日本最先獲得實(shí)際應(yīng)用, 1988 年日本鈴木公司首次開(kāi)發(fā)出一種全新的電子控制式電動(dòng)助力轉(zhuǎn)向系統(tǒng), 并裝在其生產(chǎn)的Cervo 車上, 隨后又配備在Alto 上。此后, 電動(dòng)助力轉(zhuǎn)向技術(shù)得到迅速發(fā)展, 其應(yīng)用范圍已經(jīng)從微型轎車向大型轎車和客車方向發(fā)展。日本的大發(fā)汽車公司、三菱汽車公司、本田汽車公司, 美國(guó)的Delphi公司, 英國(guó)的Lucas 公司, 德國(guó)的ZF 公司, 都研制出了各自的EPS。EPS 的助力形式也從低速范圍助力型向全速范圍助力型發(fā)展, 并且其控制形式與功能也進(jìn)一步加強(qiáng)。日本早期開(kāi)發(fā)的EPS 僅低速和停車時(shí)提供助力, 高速時(shí)EPS 將停止工作。新一代的EPS 則不僅在低速和停車時(shí)提供助力, 而且還能在高速時(shí)提高汽車的操縱穩(wěn)定性。隨著電子技術(shù)的發(fā)展, EPS 技術(shù)日趨完善, 并且其成本大幅度降低, 為此其應(yīng)用范圍將越來(lái)越大。
1.2.4 線控轉(zhuǎn)向系統(tǒng)
線控轉(zhuǎn)向系統(tǒng)( Steering by Wire-SBW) 是更新一代的汽車電子轉(zhuǎn)向系統(tǒng), 線控轉(zhuǎn)向系統(tǒng)與上述各類轉(zhuǎn)向系統(tǒng)的根本區(qū)別就是取消了轉(zhuǎn)向盤和轉(zhuǎn)向輪之間的機(jī)械連接。該系統(tǒng)具有兩個(gè)電機(jī):路感電機(jī)和驅(qū)動(dòng)電機(jī)。路感電機(jī)安裝在轉(zhuǎn)向柱上, 控制器根據(jù)汽車轉(zhuǎn)向工況控制路感電機(jī)產(chǎn)生合適的轉(zhuǎn)矩, 向駕駛員提供模擬路面信息。驅(qū)動(dòng)電機(jī)安裝在齒條上, 汽車的轉(zhuǎn)向阻力完全由驅(qū)動(dòng)電機(jī)來(lái)克服, 轉(zhuǎn)向盤只是作為轉(zhuǎn)向系統(tǒng)的一個(gè)轉(zhuǎn)角信號(hào)輸入裝置。線控轉(zhuǎn)向系統(tǒng)能夠提高汽車被動(dòng)安全性, 有利于汽車設(shè)計(jì)制造, 并能大大提高汽車的乘坐舒適性。但是由于轉(zhuǎn)向盤和轉(zhuǎn)向柱之間無(wú)機(jī)械連接, 生成讓駕駛員能夠感知汽車實(shí)際行駛狀態(tài)和路面狀況的“路感”比較困難,而且電子器件的可靠性難以保證。所以線控轉(zhuǎn)向系統(tǒng)目前處于研究階段, 只配備在一些概念汽車上,并不能得到廣泛應(yīng)用。汽車轉(zhuǎn)向技術(shù)的發(fā)展趨勢(shì)助力轉(zhuǎn)向系統(tǒng)經(jīng)過(guò)幾十年的發(fā)展, 技術(shù)日趨完善。今后, 電動(dòng)助力轉(zhuǎn)向系統(tǒng)將進(jìn)一步成熟, 線控轉(zhuǎn)向系統(tǒng)將成為我們研究的努力方向。具體來(lái)說(shuō), 轉(zhuǎn)向系統(tǒng)主要從以下幾個(gè)方面進(jìn)一步發(fā)展:
(1)傳感器技術(shù)
性能完善的電動(dòng)助力轉(zhuǎn)向系統(tǒng)需要采集轉(zhuǎn)向盤轉(zhuǎn)角信號(hào)、轉(zhuǎn)向盤轉(zhuǎn)矩信號(hào)、轉(zhuǎn)向盤轉(zhuǎn)速信號(hào)、電機(jī)電壓信號(hào)、電機(jī)電流信號(hào)等。目前, 傳感器的成本是制約電動(dòng)助力轉(zhuǎn)向系統(tǒng)迅速市場(chǎng)化的主要因素, 因此, 設(shè)計(jì)和開(kāi)發(fā)適合電動(dòng)助力轉(zhuǎn)向系統(tǒng)使用的性價(jià)比較高的傳感器是未來(lái)技術(shù)發(fā)展的關(guān)鍵。
(2)控制策略的研究
控制策略是影響助力轉(zhuǎn)向系統(tǒng)性能的關(guān)鍵因素之一, 也是電動(dòng)助力轉(zhuǎn)向系統(tǒng)的核心技術(shù)之一。目前, 國(guó)內(nèi)外許多學(xué)者都在探討將先進(jìn)的控制理論應(yīng)用于助力轉(zhuǎn)向系統(tǒng)的研究, 如魯棒控制理論、模糊控制理論、神經(jīng)網(wǎng)絡(luò)控制理論和自適應(yīng)控制理論等。今后, 控制策略研究的重點(diǎn)主要集中在如何抑制電機(jī)的力矩波動(dòng)、如何獲得較好的路感、如何抑制路面干擾和傳感器的噪聲等方面, 以進(jìn)一步優(yōu)化和改善助力轉(zhuǎn)向系統(tǒng)的動(dòng)態(tài)性能和穩(wěn)定性。
(3)助力電機(jī)的研究
助力電機(jī)是電動(dòng)助力轉(zhuǎn)向系統(tǒng)的執(zhí)行元件,助力電機(jī)的特性直接影響到控制的難易程度和駕駛員的手感。目前, 電動(dòng)助力轉(zhuǎn)向系統(tǒng)普遍采用成本較低的直流有刷電機(jī)。由于直流無(wú)刷電機(jī)采用電子換向, 減少了換向時(shí)的火花, 不需要經(jīng)常維護(hù)以及具有較高的效率和功率密度等優(yōu)點(diǎn)而受到越來(lái)越多的關(guān)注。因此, 開(kāi)發(fā)適合助力轉(zhuǎn)向系統(tǒng)使用的低成本的直流無(wú)刷電機(jī)是今后助力電機(jī)的研究方向。
1.3輕型貨車轉(zhuǎn)向系統(tǒng)設(shè)計(jì)主要內(nèi)容
本設(shè)計(jì)以循環(huán)球式轉(zhuǎn)向器的設(shè)計(jì)為中心,一是汽車總體構(gòu)架參數(shù)對(duì)汽車轉(zhuǎn)向的影響;二是機(jī)械轉(zhuǎn)式向器的設(shè)計(jì);三是轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的設(shè)計(jì);四是梯形結(jié)構(gòu)設(shè)計(jì)。因此本設(shè)計(jì)在考慮上述要求和因素的基礎(chǔ)上研究利用轉(zhuǎn)向盤的旋轉(zhuǎn)帶動(dòng)傳動(dòng)機(jī)構(gòu),通過(guò)萬(wàn)向節(jié)帶動(dòng)蝸桿軸旋轉(zhuǎn),蝸桿軸與扇形齒輪嚙合,通過(guò)安裝在扇形軸上的轉(zhuǎn)向臂向轉(zhuǎn)向拉桿機(jī)構(gòu)傳遞操作力,實(shí)現(xiàn)轉(zhuǎn)向。
(1)汽車轉(zhuǎn)向系方案的設(shè)計(jì)。
(2)汽車轉(zhuǎn)向器方案的設(shè)計(jì)。
(3)汽車轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的設(shè)計(jì)。
(4)轉(zhuǎn)向系的設(shè)計(jì)計(jì)算。
第2章 汽車轉(zhuǎn)向系方案的設(shè)計(jì)
2.1轉(zhuǎn)向系主要性能參數(shù)
轉(zhuǎn)向系的主要性能參數(shù)有轉(zhuǎn)向系的效率,轉(zhuǎn)向系的角傳動(dòng)比與力傳動(dòng)比,轉(zhuǎn)向器傳動(dòng)副的傳動(dòng)間隙特性,轉(zhuǎn)向系的剛度以及轉(zhuǎn)向盤的總轉(zhuǎn)動(dòng)圈數(shù)。
2.1.1轉(zhuǎn)向器的效率
轉(zhuǎn)向系的效率由轉(zhuǎn)向器的效率和轉(zhuǎn)向操縱機(jī)構(gòu)的效率決定,即:
(2.1)
轉(zhuǎn)向器效率又有正效率與逆效率之分。功率由轉(zhuǎn)向軸輸入,經(jīng)轉(zhuǎn)向搖臂軸輸出所求得的效率稱為正效率,反之為逆效率。
(2.2)
(2.3)
式中 ——作用在轉(zhuǎn)向軸上的功率;
——轉(zhuǎn)向器中的摩擦功率;
——作用在轉(zhuǎn)向搖臂軸上的功率。
1.正效率
影響轉(zhuǎn)向器正效率的因素有:轉(zhuǎn)向器的類型、結(jié)構(gòu)特點(diǎn)、結(jié)構(gòu)參數(shù)和制造質(zhì)量等。
(1)轉(zhuǎn)向器的類型、結(jié)構(gòu)特點(diǎn)與效率
汽車上常用的轉(zhuǎn)向器形式有循環(huán)球式、蝸桿滾輪式、齒輪齒條式和蝸桿指銷式等幾種。齒輪齒條式。循環(huán)球式轉(zhuǎn)向器的正效率比較高,其正效率可達(dá)到85%。同一類型的轉(zhuǎn)向器,因結(jié)構(gòu)不同,效率也有較大差別。如蝸桿滾輪式轉(zhuǎn)向器的滾輪與支持軸之間的軸承可以有滾針軸承、錐軸承和滾珠軸承三種結(jié)構(gòu)。第一種結(jié)構(gòu)除滾輪與滾針之間有摩擦損失外,滾輪側(cè)翼與墊片之間還有滑動(dòng)摩擦損失,故這種轉(zhuǎn)向器的效率僅達(dá)54%左右。根據(jù)試驗(yàn),其余兩種轉(zhuǎn)向器結(jié)構(gòu)的效率分別為70%和75%。
(2)轉(zhuǎn)向器的結(jié)構(gòu)參數(shù)與效率
蝸桿滾輪式轉(zhuǎn)向器的傳動(dòng)副存在較大滑動(dòng)摩擦,效率較低。對(duì)于蝸桿和螺桿類轉(zhuǎn)向器,如果忽略軸承和其他地方的抹茶損失,只考慮嚙合副的摩擦損失,其效率為
(2.4)
式中 ——蝸桿或螺桿的螺線導(dǎo)程角;
——摩擦角,=;
——摩擦系數(shù)。
2. 轉(zhuǎn)向器逆效率
根據(jù)逆效率大小不同,轉(zhuǎn)向器又有可逆式、極限可逆式和不可逆式之分。
路面作用在車輪上的力,經(jīng)過(guò)轉(zhuǎn)向系可大部分傳遞到轉(zhuǎn)向盤,這種轉(zhuǎn)向器是可逆式的。它能保證汽車轉(zhuǎn)向后,轉(zhuǎn)向輪和轉(zhuǎn)向盤自動(dòng)回正。這既減少駕駛員疲勞,又提高了行駛安全性。但是,在壞路上行駛時(shí),車輪受到的沖擊力,大部分都傳給轉(zhuǎn)向盤,駕駛員容易“打手”,使之精神狀態(tài)緊張,如長(zhǎng)時(shí)間在壞路上行駛,易使駕駛員疲勞,影響安全行駛。因此,這類轉(zhuǎn)向器適用于在良好路面上行駛的車輛。齒輪齒條式和循環(huán)球式都屬于可逆式轉(zhuǎn)向器。
不可逆式轉(zhuǎn)向器,是指車輪受到的沖擊力,不能傳到轉(zhuǎn)向盤的轉(zhuǎn)向器。該沖擊力由轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的零件承受,因而這些零件容易損壞。同時(shí),它不能保證車輪自動(dòng)回正,駕駛員又缺乏路面感覺(jué)。因此,現(xiàn)代汽車基本不采用這種轉(zhuǎn)向器。
極限可逆式轉(zhuǎn)向器介于上述兩者之間。當(dāng)車輪受有沖擊力作用時(shí),此力只有較小的一部分傳至轉(zhuǎn)向盤。它的逆效率較低,因此在壞路上行駛時(shí),駕駛員并不十分緊張,同時(shí)轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的零件,所受沖擊力也比不可逆式轉(zhuǎn)向器要小。
如果只考慮嚙合副的摩擦,忽略軸承和其他地方的摩擦損失,則逆效率可以用下式計(jì)算:
(2.5)
式(2.5)表明:增加導(dǎo)程角,逆效率也增大。因此,雖然增加導(dǎo)程角能提高正效率,但此時(shí)因?yàn)槟嫘室苍龃?,故?dǎo)程角不應(yīng)取得過(guò)大;當(dāng)導(dǎo)程角小于或等于摩擦角時(shí),逆效率為負(fù)值或者為零,此時(shí)表明該轉(zhuǎn)向器是不可逆式轉(zhuǎn)向器。為此,導(dǎo)程角的最小值必須大于摩擦角。通常螺線的導(dǎo)程角選在8°~10°之間。
2.1.2傳動(dòng)比的變化特性
1.轉(zhuǎn)向系傳動(dòng)比
轉(zhuǎn)向系的傳動(dòng)比包括轉(zhuǎn)向系的角傳動(dòng)比和轉(zhuǎn)向系的力傳動(dòng)比。
從輪胎接地面中心作用在兩個(gè)轉(zhuǎn)向輪上的合力2與作用在轉(zhuǎn)向盤上的手力之比,稱為力傳動(dòng)比,即。
轉(zhuǎn)向盤角速度與同側(cè)轉(zhuǎn)向節(jié)偏轉(zhuǎn)角速度之比,稱為轉(zhuǎn)向系角傳動(dòng)比,即
(2.6)
式中,為轉(zhuǎn)向盤轉(zhuǎn)角增量;為轉(zhuǎn)向節(jié)轉(zhuǎn)角增量;為時(shí)間增量。
又由轉(zhuǎn)向器角傳動(dòng)比和轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)角傳動(dòng)比所組成,即
(2.7)
轉(zhuǎn)向盤角速度與搖臂軸角速度之比,稱為轉(zhuǎn)向器角傳動(dòng)比,即
(2.8)
式中,為搖臂軸轉(zhuǎn)角增量。
此定義適用于除齒輪齒條式之外的轉(zhuǎn)向器。
搖臂軸角速度與同側(cè)轉(zhuǎn)向節(jié)偏轉(zhuǎn)角速度之比,稱為轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的角傳動(dòng)比,即
(2.9)
2.轉(zhuǎn)向系力傳動(dòng)比與轉(zhuǎn)向系角傳動(dòng)比的關(guān)系
輪胎與地面之間的轉(zhuǎn)向阻力和作用在轉(zhuǎn)向節(jié)上的轉(zhuǎn)向阻力矩有如下關(guān)系:
(2.10)
式中,為為主銷偏移距,指從轉(zhuǎn)向節(jié)主銷軸線的延長(zhǎng)線與支承平面的交點(diǎn)至車輪中心平面與支承平面的交線的距離。
作用在轉(zhuǎn)向盤上的手力可用下式表示:
(2.11)
式中,為作用在轉(zhuǎn)向盤上的力矩;為轉(zhuǎn)向盤直徑。
將式(2.10),(2.11)代入后得到
(2.12)
分析式(2.12)可知,主銷偏移距越小,力傳動(dòng)比越大,轉(zhuǎn)向越輕便。通常乘用車的值在0.4~0.6倍輪胎的胎面寬度尺寸范圍內(nèi)選取,而貨車的值在40~60范圍內(nèi)選取。轉(zhuǎn)向盤直徑對(duì)輕便性有影響,選用尺寸小寫的轉(zhuǎn)向盤,雖然占用的空間少,但轉(zhuǎn)向時(shí)需要對(duì)轉(zhuǎn)向盤施以較大的力,而選用尺寸大些的轉(zhuǎn)向盤又會(huì)使駕駛員進(jìn)出駕駛室時(shí)入座困難。根據(jù)齒形不同,轉(zhuǎn)向盤直徑在的標(biāo)準(zhǔn)系列內(nèi)選取。如果忽略摩擦損失,可以用下式表示:
(2.13)
將式(2.12)代入式(2.13)后得到
(2.14)
當(dāng)和不變時(shí),力傳動(dòng)比越大,雖然轉(zhuǎn)向越輕,但也越大,表明轉(zhuǎn)向不靈敏。
3.轉(zhuǎn)向系的角傳動(dòng)比
轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的角傳動(dòng)比,還可以近似地用轉(zhuǎn)向節(jié)臂臂長(zhǎng)與搖臂臂長(zhǎng)之比來(lái)表示,即:
(2.15)
在現(xiàn)代汽車結(jié)構(gòu)中,與的比值大約在0.85~1.10之間,可粗略認(rèn)為其比值為1,即近似為1,則:
(2.16)
由此可見(jiàn),研究轉(zhuǎn)向系的傳動(dòng)比特性,只需研究轉(zhuǎn)向器的角傳動(dòng)比及其變化規(guī)律即可。
4.轉(zhuǎn)向器角傳動(dòng)比及其變化規(guī)律
式(2.14)表明:增大角傳動(dòng)比可以增加力傳動(dòng)比。當(dāng)轉(zhuǎn)向阻力一定時(shí),增大力傳動(dòng)比能減少作用在轉(zhuǎn)向盤上的手力,使操縱輕便。
考慮到,由的定義可知:對(duì)于一定的轉(zhuǎn)向盤轉(zhuǎn)角,轉(zhuǎn)向輪轉(zhuǎn)角與轉(zhuǎn)向器角傳動(dòng)比成反比。角傳動(dòng)比增加后,轉(zhuǎn)向輪轉(zhuǎn)角對(duì)同一轉(zhuǎn)向盤轉(zhuǎn)角的響應(yīng)變的遲鈍,操縱時(shí)間增長(zhǎng),汽車轉(zhuǎn)向靈敏性降低,所以“輕”和“靈”構(gòu)成了一隊(duì)矛盾。為解決這對(duì)矛盾,可采用變傳動(dòng)比轉(zhuǎn)向器。
齒輪齒條式、循環(huán)球齒條齒扇式、蝸桿滾輪式及蝸桿指銷式轉(zhuǎn)向器都可以制成變速比轉(zhuǎn)向器。
對(duì)于循環(huán)齒條齒扇式轉(zhuǎn)向器的角傳動(dòng)比。因結(jié)構(gòu)原因,螺距P不能變化,但可以用改變齒扇嚙合半徑r的方法,達(dá)到使循環(huán)球齒條齒扇式轉(zhuǎn)向器實(shí)現(xiàn)變速比的目的。
對(duì)于乘用車,推薦轉(zhuǎn)向器角傳動(dòng)比在范圍內(nèi)選?。粚?duì)于商用車,在范圍內(nèi)選取。
2.1.3轉(zhuǎn)向器傳動(dòng)副的傳動(dòng)間隙
傳動(dòng)間隙是指各種轉(zhuǎn)向器中傳動(dòng)副(如循環(huán)球式轉(zhuǎn)向器的齒扇和齒條)之間的間隙。該間隙隨轉(zhuǎn)向盤轉(zhuǎn)角大小的不同而改變,這種變化和轉(zhuǎn)向器的使用壽命有關(guān)。
如何獲得傳動(dòng)間隙特性將在后面轉(zhuǎn)向器的設(shè)計(jì)中介紹。
2.1.4轉(zhuǎn)向盤的總轉(zhuǎn)動(dòng)圈數(shù)
轉(zhuǎn)向盤從一個(gè)極端位置轉(zhuǎn)到另一個(gè)極端位置時(shí)所轉(zhuǎn)過(guò)的圈數(shù)稱為轉(zhuǎn)向盤的總轉(zhuǎn)動(dòng)圈數(shù)。它與轉(zhuǎn)向輪的最大轉(zhuǎn)角及轉(zhuǎn)向系的角傳動(dòng)比有關(guān),并影響轉(zhuǎn)向的操縱輕便性和靈敏性。橋車轉(zhuǎn)向盤的總轉(zhuǎn)動(dòng)圈數(shù)較少,一般約在3.6圈以內(nèi);貨車一般不宜超過(guò)6圈。
2.2轉(zhuǎn)向系的選擇
汽車轉(zhuǎn)向系可按轉(zhuǎn)向能源的不同分為機(jī)械轉(zhuǎn)向系和動(dòng)力轉(zhuǎn)向系兩大類。本設(shè)計(jì)采用的是機(jī)械式轉(zhuǎn)向系。
2.2.1機(jī)械轉(zhuǎn)向系
機(jī)械轉(zhuǎn)向系以駕駛員的體力作為轉(zhuǎn)向能源,其中所有傳力件都是機(jī)械的。機(jī)械轉(zhuǎn)向系由轉(zhuǎn)向操縱機(jī)構(gòu)、轉(zhuǎn)向器和轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)三大部分組成。
圖2.1所示為紅旗CA7220型轎車的機(jī)械轉(zhuǎn)向系統(tǒng)。當(dāng)汽車轉(zhuǎn)向時(shí),駕駛員對(duì)轉(zhuǎn)向盤施加一個(gè)轉(zhuǎn)向力矩。該力矩通過(guò)轉(zhuǎn)向軸和柔性聯(lián)軸節(jié)輸入轉(zhuǎn)向器,再經(jīng)左,右橫拉桿,傳給固定于兩側(cè)轉(zhuǎn)向節(jié)上的左、右轉(zhuǎn)向節(jié)臂,使轉(zhuǎn)向節(jié)和它所支撐的轉(zhuǎn)向輪繞主銷軸線偏移一定角度,實(shí)現(xiàn)轉(zhuǎn)向。
目前,許多國(guó)內(nèi)外生產(chǎn)的新車型在轉(zhuǎn)向操縱機(jī)構(gòu)中采用了萬(wàn)向傳動(dòng)裝置(轉(zhuǎn)向萬(wàn)向節(jié)和轉(zhuǎn)向傳動(dòng)軸)。如圖2.2,這有助于轉(zhuǎn)向盤和轉(zhuǎn)向器等部件和組件的通用化和系列化。只要適當(dāng)改變轉(zhuǎn)向萬(wàn)向傳動(dòng)裝置的幾何參數(shù),便可以滿足各種變型車的總布置要求。即使在轉(zhuǎn)向盤與轉(zhuǎn)向器同軸線的情況下,其間也可以采用萬(wàn)向傳動(dòng)裝置,以補(bǔ)償由于部件在車上的安裝誤差和安裝基體(駕駛室、車架)的變形所造成的二者軸線實(shí)際上的不重合。
圖2.1 紅旗CA7220型轎車的機(jī)械轉(zhuǎn)向系統(tǒng)
圖2.2 汽車轉(zhuǎn)向系示意圖
轉(zhuǎn)向盤在駕駛室內(nèi)的安置位置與各國(guó)交通法規(guī)規(guī)定車輛靠道路左側(cè)還是右側(cè)通行有關(guān)。包括我國(guó)在內(nèi)的大多數(shù)國(guó)家規(guī)定車輛右側(cè)通行,相應(yīng)地應(yīng)將轉(zhuǎn)向盤安置在駕駛室左側(cè)。這樣,駕駛員左方的視野較廣闊,有利于兩車安全交會(huì)。相反,在一些規(guī)定車輛靠左側(cè)通行的國(guó)家和地區(qū)使用的汽車上,轉(zhuǎn)向盤則應(yīng)安置在駕駛室右側(cè)。
2.2.2動(dòng)力轉(zhuǎn)向系
為了減輕轉(zhuǎn)向時(shí)駕駛員作用到轉(zhuǎn)向盤上的手力和提高行駛安全,在有些汽車上裝設(shè)了動(dòng)力轉(zhuǎn)向機(jī)構(gòu)。
發(fā)動(dòng)機(jī)排量在2.5L以上的乘用車,由與對(duì)其操縱輕便性的要求越來(lái)越高,采用或者可供選裝動(dòng)力轉(zhuǎn)向器的逐漸增多。轉(zhuǎn)向軸軸載質(zhì)量超過(guò)2.5t的貨車,可以采用動(dòng)力轉(zhuǎn)向;當(dāng)超過(guò)4t時(shí),應(yīng)該采用動(dòng)力轉(zhuǎn)向。
動(dòng)力轉(zhuǎn)向系統(tǒng)是兼用駕駛員體力和發(fā)動(dòng)機(jī)(或電動(dòng)機(jī))的動(dòng)力作為轉(zhuǎn)向能源的轉(zhuǎn)向系統(tǒng)。動(dòng)力轉(zhuǎn)向系統(tǒng)是在機(jī)械轉(zhuǎn)向系統(tǒng)的基礎(chǔ)上加設(shè)一套轉(zhuǎn)向加力裝置而形成的。
在正常情況下,汽車轉(zhuǎn)向所需能量,只有一小部分由駕駛員提供,而大部分是由發(fā)動(dòng)機(jī)通過(guò)動(dòng)力轉(zhuǎn)向裝置提供的。但在動(dòng)力轉(zhuǎn)向裝置失效時(shí),一般還應(yīng)當(dāng)能由駕駛員獨(dú)立承擔(dān)汽車轉(zhuǎn)向任務(wù)。因此,動(dòng)力轉(zhuǎn)向系是在機(jī)械轉(zhuǎn)向系的基礎(chǔ)上加設(shè)一套動(dòng)力轉(zhuǎn)向裝置而形成的。
對(duì)最大總質(zhì)量在50噸以上的重型汽車而言,一旦動(dòng)力轉(zhuǎn)向裝置失效,駕
駛員通過(guò)機(jī)械傳動(dòng)系加于萬(wàn)向節(jié)的力遠(yuǎn)不足以使轉(zhuǎn)向輪偏轉(zhuǎn)而實(shí)現(xiàn)轉(zhuǎn)向。故這種汽車的動(dòng)力轉(zhuǎn)向裝置應(yīng)當(dāng)特別穩(wěn)定可靠。
1.液壓式動(dòng)力轉(zhuǎn)向機(jī)構(gòu)
液壓式動(dòng)力轉(zhuǎn)向由于油壓工作壓力高,動(dòng)力缸尺寸,質(zhì)量小,結(jié)構(gòu)緊湊,油液具有不可壓縮性,靈敏度高以及油液的阻尼作用可以吸收路面沖擊等優(yōu)點(diǎn)二被廣泛應(yīng)用。
圖2.3為一汽轎車公司生產(chǎn)的Mazda6型轎車的液壓助力轉(zhuǎn)向系統(tǒng)。其中屬于動(dòng)力轉(zhuǎn)向裝置的部件是:轉(zhuǎn)向油罐、轉(zhuǎn)向油泵、轉(zhuǎn)向控制閥和轉(zhuǎn)向動(dòng)力缸。當(dāng)駕駛員逆時(shí)針轉(zhuǎn)動(dòng)轉(zhuǎn)向盤時(shí),轉(zhuǎn)向搖臂帶動(dòng)轉(zhuǎn)向直拉桿前移,直拉桿的力作用于轉(zhuǎn)向節(jié)臂,并依次傳到梯形臂和轉(zhuǎn)向橫拉桿,使之右移。與此同時(shí),轉(zhuǎn)向直拉桿還帶動(dòng)轉(zhuǎn)向控制閥中的滑閥,使轉(zhuǎn)向動(dòng)力缸的右腔接通液面壓力為零的轉(zhuǎn)向油罐。油泵的高壓油進(jìn)入轉(zhuǎn)向動(dòng)力缸的左腔,于是轉(zhuǎn)向動(dòng)力缸的活塞上受到向右的液壓作用力便經(jīng)推桿施加在橫拉桿上,也使之右移。這樣駕駛員施于轉(zhuǎn)向盤上很小的轉(zhuǎn)向力矩,便能克服地面作用于轉(zhuǎn)向輪上的轉(zhuǎn)向阻力矩。
2.車速感應(yīng)型動(dòng)力轉(zhuǎn)向機(jī)構(gòu)
隨著轉(zhuǎn)向軸負(fù)荷的增加,為轉(zhuǎn)動(dòng)轉(zhuǎn)向輪駕駛員作用在轉(zhuǎn)向盤上的力增加得也越多。這不僅容易造成駕駛員疲勞,而且疲勞駕駛也極易引發(fā)交通事故。為了滿足在任何行駛工況下轉(zhuǎn)向行駛都能保證良好的操縱輕便性和操縱穩(wěn)定性,就必須采用車速傳感型動(dòng)力轉(zhuǎn)向機(jī)構(gòu)。
圖2.3 Mazda6型轎車動(dòng)力轉(zhuǎn)向系統(tǒng)示意圖
目前已有的車速感應(yīng)型動(dòng)力轉(zhuǎn)向機(jī)構(gòu),有電控液壓動(dòng)力轉(zhuǎn)向機(jī)構(gòu)和電動(dòng)助力轉(zhuǎn)向機(jī)構(gòu)兩種。
2.3本章小結(jié)
本章主要對(duì)轉(zhuǎn)向系統(tǒng)的方案進(jìn)行設(shè)計(jì)。包括通過(guò)轉(zhuǎn)向器的效率公式確定導(dǎo)程角,通過(guò)傳動(dòng)比的變化特性確定傳動(dòng)比及轉(zhuǎn)向盤的總轉(zhuǎn)動(dòng)圈數(shù)和機(jī)械轉(zhuǎn)向系的確定,為下面的設(shè)計(jì)過(guò)程做鋪墊。
第3章 汽車轉(zhuǎn)向器方案的設(shè)計(jì)
3.1機(jī)械式轉(zhuǎn)向器的選擇
根據(jù)所采用的轉(zhuǎn)向傳動(dòng)副的不同,轉(zhuǎn)向器的結(jié)構(gòu)形式有多種。常見(jiàn)的有齒輪齒條式、循環(huán)球式、球面蝸桿滾輪式、蝸桿指銷式等。
對(duì)轉(zhuǎn)向器結(jié)構(gòu)型式的選擇,主要是根據(jù)汽車的類型,前軸負(fù)荷,使用條件等來(lái)決定,并要考慮其效率特性,角傳動(dòng)比變化特性等對(duì)使用條件的適應(yīng)性以及轉(zhuǎn)向器的其他性能,壽命,制造工藝等。
本設(shè)計(jì)選用的是循環(huán)球—齒條齒扇式轉(zhuǎn)向器。
3.1.1齒輪齒條式轉(zhuǎn)向器
齒輪齒條式轉(zhuǎn)向器(圖3.1)由與轉(zhuǎn)向軸做成一體的轉(zhuǎn)向齒輪和常與轉(zhuǎn)向橫拉桿做成一體的齒條組成。與其他形式的轉(zhuǎn)向器比較,齒輪齒條式式轉(zhuǎn)向器最主要的優(yōu)點(diǎn)是:結(jié)構(gòu)簡(jiǎn)單,緊湊;殼體采用鋁合金或鎂合金壓鑄而成,轉(zhuǎn)向器的質(zhì)量比較少;傳動(dòng)效率高達(dá)90%;轉(zhuǎn)向器占用的體積小,沒(méi)有轉(zhuǎn)向搖臂和直拉桿,所以轉(zhuǎn)向輪轉(zhuǎn)角可以增大;制造成本低。
齒輪齒條式式轉(zhuǎn)向器最主要的缺點(diǎn)是:因逆效率高(60%70%),汽車在不平路面上行駛時(shí),發(fā)生在轉(zhuǎn)向輪與路面之間沖擊力的大部分能轉(zhuǎn)至轉(zhuǎn)向盤,稱之為反沖。反沖現(xiàn)象會(huì)使駕駛員精神緊張,并難以準(zhǔn)確控制汽車行駛方向,轉(zhuǎn)向盤突然轉(zhuǎn)動(dòng)又會(huì)造成打手,同時(shí)對(duì)駕駛員造成傷害。
3.1.2循環(huán)球式轉(zhuǎn)向器
循環(huán)球式轉(zhuǎn)向器由螺桿和螺母共同形成的螺旋槽內(nèi)裝鋼球構(gòu)成的傳動(dòng)副,以及螺母上齒條與搖臂軸上齒扇構(gòu)成的傳動(dòng)副組成,如圖3.2。
循環(huán)球式轉(zhuǎn)向器的優(yōu)點(diǎn)是:在螺桿和螺母之間因?yàn)橛锌梢匝h(huán)流動(dòng)的鋼球,將滑動(dòng)摩擦轉(zhuǎn)變?yōu)闈L動(dòng)摩擦,因而傳動(dòng)效率可達(dá)到75%85%;在結(jié)構(gòu)和工藝上采取措施后,包括提高制造精度,改善工作表面的表面粗糙度和螺桿。螺母上的螺旋槽經(jīng)淬火和磨削加工,使之有足夠的硬度和耐磨損性能,可保證有足夠的使用壽命;轉(zhuǎn)向器的傳動(dòng)比可以變化;工作平穩(wěn)可靠;齒條和齒扇之間的間隙調(diào)整工作容易進(jìn)行;適合用來(lái)做整體式動(dòng)力轉(zhuǎn)向器。
圖3.1 齒輪齒條式轉(zhuǎn)向器示意圖
圖3.2 循環(huán)球式轉(zhuǎn)向器示意圖
循環(huán)球式轉(zhuǎn)向器的缺點(diǎn)是:逆效率高,結(jié)構(gòu)復(fù)雜,制造困難,制造精度要求高。
循環(huán)球式轉(zhuǎn)向器主要用于商用車上。
3.1.3蝸桿滾輪式轉(zhuǎn)向器
蝸桿滾輪式轉(zhuǎn)向器由蝸桿和滾輪嚙合而構(gòu)成。其主要優(yōu)點(diǎn)是:結(jié)構(gòu)簡(jiǎn)單;制造容易;因?yàn)闈L輪的齒面和蝸桿上的螺紋呈面接觸,所以有較高的強(qiáng)度,工作可靠,磨損小,壽命長(zhǎng);逆效率低。
蝸桿滾輪式轉(zhuǎn)向器主要缺點(diǎn)是:正效率低;工作齒面磨損以后,調(diào)整嚙合間隙比較困難;轉(zhuǎn)向器的傳動(dòng)比不能改變。
這種轉(zhuǎn)向器曾在汽車上廣泛使用過(guò)。
3.1.4蝸桿指銷式轉(zhuǎn)向器
蝸桿指銷式轉(zhuǎn)向器的銷子若不能自轉(zhuǎn),稱為固定銷式蝸桿指銷式轉(zhuǎn)向器;銷子除隨同搖臂軸轉(zhuǎn)動(dòng)外,還能繞自身軸線轉(zhuǎn)動(dòng)的,稱為旋轉(zhuǎn)銷式轉(zhuǎn)向器。根據(jù)銷子數(shù)量不同,又有單銷和雙銷之分。
蝸桿指銷式轉(zhuǎn)向器的優(yōu)點(diǎn)是:轉(zhuǎn)向器的傳動(dòng)比可以做成不變的或者變化的;指銷和蝸桿之間的工作面磨損后,調(diào)整間隙工作容易。
固定銷蝸桿指銷式轉(zhuǎn)向器的結(jié)構(gòu)簡(jiǎn)單,制造容易;但是因銷子不能自轉(zhuǎn),銷子的工作部位基本保持不變,所以磨損快,工作效率低。旋轉(zhuǎn)銷式轉(zhuǎn)向器的效率高,磨損慢,但結(jié)構(gòu)復(fù)雜。
蝸桿指銷式轉(zhuǎn)向器應(yīng)有較少。
3.2本章小結(jié)
本章主要對(duì)轉(zhuǎn)向器進(jìn)行選擇,通過(guò)對(duì)齒輪齒條式轉(zhuǎn)向器、循環(huán)球式轉(zhuǎn)向器、蝸桿滾輪式轉(zhuǎn)向器和蝸桿指銷式轉(zhuǎn)向器的對(duì)比,選擇了循環(huán)球式齒條齒扇轉(zhuǎn)向器,為下面的設(shè)計(jì)做準(zhǔn)備。
第4章 汽車轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的設(shè)計(jì)
4.1轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的選擇
從轉(zhuǎn)向器到轉(zhuǎn)向輪之間的所有傳動(dòng)桿件總稱為轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)。
轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的功用是將轉(zhuǎn)向器輸出的力和運(yùn)動(dòng)傳到轉(zhuǎn)向橋兩側(cè)的轉(zhuǎn)向節(jié),使轉(zhuǎn)向輪偏轉(zhuǎn),并使兩轉(zhuǎn)向輪偏轉(zhuǎn)角按一定關(guān)系變化,以保證汽車轉(zhuǎn)向時(shí)車輪與地面的相對(duì)滑動(dòng)盡可能小。
4.1.1與非獨(dú)立懸架配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)
1.轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的組成
轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)由轉(zhuǎn)向搖臂、轉(zhuǎn)向直拉桿、轉(zhuǎn)向節(jié)臂和轉(zhuǎn)向梯形等零部件共同組成,其中轉(zhuǎn)向梯形由梯形臂、轉(zhuǎn)向橫拉桿和前梁共同構(gòu)成,如圖4.1。
圖4.1 與非獨(dú)立懸架配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)示意圖
2.轉(zhuǎn)向搖臂
循環(huán)球式轉(zhuǎn)向器和蝸桿曲柄指銷式轉(zhuǎn)向器通過(guò)轉(zhuǎn)向搖臂與轉(zhuǎn)向直拉桿相連。轉(zhuǎn)向搖臂的大端用錐形三角細(xì)花鍵與轉(zhuǎn)向器中搖臂軸的外端連接,小端通過(guò)球頭銷與轉(zhuǎn)向直拉桿作空間鉸鏈連接,如圖4.2。
3.轉(zhuǎn)向直拉桿
轉(zhuǎn)向直拉桿是轉(zhuǎn)向搖臂與轉(zhuǎn)向節(jié)臂之間的傳動(dòng)桿件,具有傳力和緩沖作用。在轉(zhuǎn)向輪偏轉(zhuǎn)且因懸架彈性變形而相對(duì)于車架跳動(dòng)時(shí),轉(zhuǎn)向直拉桿與轉(zhuǎn)向搖臂及轉(zhuǎn)向節(jié)臂的相對(duì)運(yùn)動(dòng)都是空間運(yùn)動(dòng),為了不發(fā)生運(yùn)動(dòng)干涉,三者之間的連接件都是球形鉸鏈,如圖4.3。
圖4.2 轉(zhuǎn)向搖臂示意圖
圖4.3 轉(zhuǎn)向直拉桿示意圖
4.轉(zhuǎn)向橫拉桿
轉(zhuǎn)向橫拉桿是轉(zhuǎn)向梯形機(jī)構(gòu)的底邊,由橫拉桿體和旋裝在兩端的橫拉桿接頭組成。其特點(diǎn)是長(zhǎng)度可調(diào),通過(guò)調(diào)整橫拉桿的長(zhǎng)度,可以調(diào)整前輪前束,如圖4.4。
4.1.2與獨(dú)立懸架配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)
當(dāng)轉(zhuǎn)向輪采用獨(dú)立懸架時(shí),為了滿足轉(zhuǎn)向輪獨(dú)立運(yùn)動(dòng)的需要,轉(zhuǎn)向橋是斷開(kāi)式的,轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)中的轉(zhuǎn)向梯形也必須斷開(kāi)。與獨(dú)立懸架配用的多數(shù)是齒輪齒條式轉(zhuǎn)向器,轉(zhuǎn)向器布置在車身上,轉(zhuǎn)向橫拉桿通過(guò)球頭銷與齒條及轉(zhuǎn)向節(jié)臂相連。
圖4.4 解放CA1091型汽車轉(zhuǎn)向橫拉桿
1.轉(zhuǎn)向搖臂 2.轉(zhuǎn)向直拉桿 3.左轉(zhuǎn)向橫拉桿 4.右轉(zhuǎn)向橫拉桿 5.左梯形臂 6.右梯形臂 7.搖桿 8.懸架左擺臂 9.懸架右擺臂 10.齒輪齒條式轉(zhuǎn)向器
圖4.5 斷開(kāi)式轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)示意圖
4.2轉(zhuǎn)向梯形的選擇
轉(zhuǎn)向梯形有整體式和斷開(kāi)式兩種,選擇整體式或斷開(kāi)式轉(zhuǎn)向梯形方案與懸架采用何種方案有關(guān)。無(wú)論采用哪一種方案,都必須正確選擇轉(zhuǎn)向梯形參數(shù),做到汽車轉(zhuǎn)彎時(shí),保證全部車輪繞一個(gè)瞬時(shí)轉(zhuǎn)向中心行駛,使在不同圓周上運(yùn)動(dòng)的車輪,作無(wú)滑動(dòng)的純滾動(dòng)運(yùn)動(dòng)。同時(shí),為達(dá)到總體布置要求的最小轉(zhuǎn)彎直徑值,轉(zhuǎn)向輪應(yīng)有足夠大的轉(zhuǎn)角。本設(shè)計(jì)中由于采用的是非獨(dú)立式懸架,應(yīng)當(dāng)選用與之配用的整體式轉(zhuǎn)向梯形。
4.2.1整體式轉(zhuǎn)向梯形
整體式轉(zhuǎn)向梯形是由轉(zhuǎn)向橫拉桿1、轉(zhuǎn)向梯形臂2和汽車前軸3組成,如下圖所示。
1.轉(zhuǎn)向橫拉桿 2.轉(zhuǎn)向梯形臂 3.前軸
圖4.6 整體式轉(zhuǎn)向梯形
其中梯形臂呈收縮狀向后延伸。這種方案的優(yōu)點(diǎn)是結(jié)構(gòu)簡(jiǎn)單,調(diào)整前束容易,制造成本低;主要缺點(diǎn)是一側(cè)轉(zhuǎn)向輪上、下跳動(dòng)時(shí),會(huì)影響另一側(cè)轉(zhuǎn)向輪。
當(dāng)汽車前懸架采用非獨(dú)立式懸架時(shí),應(yīng)當(dāng)采用整體式轉(zhuǎn)向梯形。整體式轉(zhuǎn)向梯形的橫拉桿可位于前軸后或者前軸前(稱為前置梯形)。對(duì)于發(fā)動(dòng)機(jī)位置低或前輪驅(qū)動(dòng)汽車,常采用前置梯形。前置梯形的梯形臂必須向前外側(cè)方向延伸,因而會(huì)與車輪或制動(dòng)底版發(fā)生干涉,所以在布置上有困難。為了保護(hù)橫拉桿免遭路面不平物的損傷,橫拉桿的位置應(yīng)盡可能布置得高些,至少不低于前軸高度。
4.2.2斷開(kāi)式轉(zhuǎn)向梯形
轉(zhuǎn)向梯形的橫拉桿做成斷開(kāi)的,稱之為斷開(kāi)式轉(zhuǎn)向梯形。斷開(kāi)式轉(zhuǎn)向梯形的主要優(yōu)點(diǎn)是它與前輪采用獨(dú)立懸架相配合,能夠保證一側(cè)車輪上、下跳動(dòng)時(shí),不會(huì)影響另一側(cè)車輪。與整體式轉(zhuǎn)向梯形比較,由于其桿系、球頭增多,所以結(jié)構(gòu)復(fù)雜;制造成本高;并且調(diào)整前束比較困難。
橫拉桿上斷開(kāi)點(diǎn)的位置與獨(dú)立懸架形式有關(guān)。采用雙橫臂獨(dú)立懸架,常用圖解法(基于三心定理)確定斷開(kāi)點(diǎn)的位置。其求法如下:
1)延長(zhǎng)與,交于立柱AB的瞬心P點(diǎn),由P點(diǎn)作直線PS。S點(diǎn)為轉(zhuǎn)向節(jié)臂球銷中心在懸架桿件(雙橫臂)所在平面上的投影。當(dāng)懸架搖臂的軸線斜置時(shí),應(yīng)以垂直于搖臂軸的平面作為當(dāng)量平面進(jìn)行投影和運(yùn)動(dòng)分析。
2)延長(zhǎng)直線AB與,交于點(diǎn),連直線。
3)連接S和B點(diǎn),延長(zhǎng)直線SB。
4)作直線,使直線與間夾角等于直線與PS間的夾角。當(dāng)S點(diǎn)低于A點(diǎn)時(shí),線應(yīng)低于線。
5)延長(zhǎng)PS與,相交于D點(diǎn),此D點(diǎn)便是橫拉桿鉸接點(diǎn)(斷開(kāi)點(diǎn))的理想的位置。
圖4.7 斷開(kāi)式轉(zhuǎn)向梯形
以上是在前輪沒(méi)有轉(zhuǎn)向的情況下,確定斷開(kāi)點(diǎn)D位置的方法。此外,還要對(duì)車輪向左轉(zhuǎn)和向右轉(zhuǎn)的幾種不同的工況進(jìn)行校核。圖解方法同上,但S點(diǎn)的位置變了;當(dāng)車輪轉(zhuǎn)向時(shí),可認(rèn)為S點(diǎn)沿垂直于主銷中心線AB的平面上畫弧(不計(jì)主銷后傾角)。如果用這種方法所得到的橫拉桿長(zhǎng)度在不同轉(zhuǎn)角下都相同或十分接近,則不僅在汽車直線行駛時(shí),而且在轉(zhuǎn)向時(shí),車輪的跳動(dòng)都不會(huì)對(duì)轉(zhuǎn)向產(chǎn)生影響。雙橫臂互相平行的懸架能滿足此要求,見(jiàn)圖4.8a和c。
圖4.8 斷開(kāi)點(diǎn)的確定
4.3本章小結(jié)
本章對(duì)轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)進(jìn)行設(shè)計(jì),由于本設(shè)計(jì)選用的是非獨(dú)立式懸架,因此選用與非獨(dú)立懸架配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu),轉(zhuǎn)向梯形也選用與之配用的整體式轉(zhuǎn)向梯形,為下一章的整體式轉(zhuǎn)向梯形結(jié)構(gòu)優(yōu)化設(shè)計(jì)做準(zhǔn)備。
第5章 轉(zhuǎn)向系的設(shè)計(jì)計(jì)算
本設(shè)計(jì)主要參照東風(fēng)EQ1061T502輕型貨車,其基本參數(shù)為:兩軸式42驅(qū)動(dòng)平頭貨車,最高車速115km/h,裝載質(zhì)量3t,最小轉(zhuǎn)彎直徑不大于14m,最大爬坡度不小于0.3。
5.1轉(zhuǎn)向器的結(jié)構(gòu)型式選擇及其設(shè)計(jì)計(jì)算
循環(huán)球式轉(zhuǎn)向器又有兩種結(jié)構(gòu)型式,即常見(jiàn)的循環(huán)球-齒條齒扇式和另一種即循環(huán)球-曲柄銷式。它們各有兩個(gè)傳動(dòng)副,前者為:螺桿、鋼球和螺母?jìng)鲃?dòng)副以及螺母上的齒條和搖臂軸上的齒扇傳動(dòng)副;后者為螺桿、鋼球和螺母?jìng)鲃?dòng)副以及螺母上的銷座與搖臂軸的錐銷或球銷傳動(dòng)副。兩種結(jié)構(gòu)的調(diào)整間隙方法均是利用調(diào)整螺栓移動(dòng)搖臂軸來(lái)進(jìn)行調(diào)整。
本設(shè)計(jì)選用的循環(huán)球-齒條齒扇式轉(zhuǎn)向器。
5.1.1螺桿—鋼球—螺母?jìng)鲃?dòng)副的設(shè)計(jì)
表5.1 各類汽車循環(huán)球轉(zhuǎn)向器的齒扇模數(shù)
齒扇模數(shù)
3.0
3.5
4.0
4.5
5.0
6.0
6.5
乘用車
排量
550
1000
1600
2000
2000
一一
一一
前橋負(fù)荷
3.5
3.8
4.7
7.35
7.0
9.0
8.3
11.0
10.0
11.0
一一
一一
商用車
前橋負(fù)荷
3.0
5.0
4.5
7.5
5.5
18.5
7.0
19.5
9.0
24
17.0
37.0
23.0
44.0
最大裝載質(zhì)量
350
1000
2500
2700
4000
6000
8000
由設(shè)計(jì)要求可知最大裝載質(zhì)量為3000kg,由前面的整體設(shè)計(jì)知滿載時(shí):前軸負(fù)荷為2.2t,即22000N,所以根據(jù)表6.1,齒扇模數(shù)選5.0mm。
(1)鋼球中心距D、螺桿外徑D1和螺母內(nèi)徑D2
鋼球中心距是基本尺寸。螺桿外徑D1,螺母內(nèi)徑D2及鋼球直徑d對(duì)確定鋼球中
表5.2 循環(huán)球式轉(zhuǎn)向器主要參數(shù)
齒扇模數(shù)/mm
3.0
3.5
4.0
4.5
5.0
6.0
6.5
搖臂軸直徑/mm
22
26
30
32
32/35
38/40
42/45
鋼球中心距/mm
20
23/25
25
28
60/32
35
40
螺桿外徑/mm
20
23/25
25
28
29
34
38
鋼球直徑/mm
5.556
5.556
6.350
6.350
7.144
7.144/8.000
螺距/mm
7.938
8.731
9.525
9.525
10.000
10.000
11.000
工作圈數(shù)
1.5
1.2/2.5
2.5
環(huán)流行數(shù)
2
螺母長(zhǎng)度/mm
41
45/52
46/47
58
56/59/ 62
72/78
80/82
齒扇齒數(shù)
3/5
5
齒扇整圓齒數(shù)
12/13
13
13/14/15
齒扇壓力角
22°30′/27°30′
切削角
6°30′
6°30′
7°30′
齒扇寬/mm
22/25
25/27
25/28
30
28~32
30/34/38
35/38
心距D的大小有影響,而D又對(duì)轉(zhuǎn)向器結(jié)構(gòu)尺寸和強(qiáng)度有影響。在保證足夠的強(qiáng)度條件下,盡可能將D值取小些。選取D值的規(guī)律是隨著扇齒模數(shù)的增大,鋼球中心距D也相應(yīng)增加(表5.2)。
設(shè)計(jì)時(shí)先參考同類汽車的參數(shù)進(jìn)行初選,經(jīng)強(qiáng)度驗(yàn)算后,再進(jìn)行修正。螺桿外徑D1通常在20~38范圍內(nèi)變化,設(shè)計(jì)時(shí)應(yīng)根據(jù)轉(zhuǎn)向軸負(fù)荷的不同來(lái)選定。螺母內(nèi)徑D2應(yīng)大于D1,一般要求D2 - D1=(5%10%)D。
根據(jù)表5.2,本設(shè)計(jì)初選鋼球中心距為32mm,螺桿外徑29mm,D2-D1=8%D,所以螺母內(nèi)徑D2為32mm。
(2)鋼球直徑d及數(shù)量n
鋼球直徑尺寸d取得大,能提高承載能力,同時(shí)螺桿和螺母?jìng)鲃?dòng)機(jī)構(gòu)和轉(zhuǎn)向器的尺寸也隨之增加。鋼球直徑應(yīng)符合國(guó)家標(biāo)準(zhǔn)一般常在79mm范圍內(nèi)選用(表5.2)。
增加鋼球數(shù)量n,能提高承載能力,但是鋼球流動(dòng)性變壞,從而使傳動(dòng)效率降低。因?yàn)殇撉蛑睆奖旧碛姓`差,所以共同參加工作的鋼球數(shù)量并不是全部的鋼球數(shù)。經(jīng)驗(yàn)表明,每個(gè)環(huán)路中的鋼球數(shù)以不超過(guò)60為好。為保證盡可能多的鋼球都承載,應(yīng)分組裝配。每個(gè)環(huán)路中的鋼球數(shù)為
(5.1)
式中,D為鋼球中心距;W為一個(gè)環(huán)路中那個(gè)的鋼球工作圈數(shù);n為不包括環(huán)流導(dǎo)管中的鋼球數(shù);為螺線導(dǎo)程角,常取=5°~8°,故1。
本設(shè)計(jì)中鋼球直徑d=7.144,工作圈數(shù)W=2.5,由公式(5.1)可得鋼球數(shù)n為36。
(3)滾道截面
當(dāng)螺桿和螺母的滾道截面各由兩條圓弧組成,形成四段圓弧滾道截面時(shí),如圖5.1所示,鋼球與滾道有四點(diǎn)接觸,傳動(dòng)時(shí)軸向間隙最小,可滿足轉(zhuǎn)向盤自由行程小的要求。圖5.1中滾道與鋼球之間的間隙,除用來(lái)儲(chǔ)存潤(rùn)滑油之外,還能儲(chǔ)存磨損雜質(zhì)。為了減少摩擦,螺桿和螺母溝槽的半徑應(yīng)大于鋼球半徑d/2,一般取=(0.51~0.53)d。螺桿滾道應(yīng)倒角,用來(lái)避免該處被嚙出毛刺而劃傷鋼球后降低傳動(dòng)效率。
本設(shè)計(jì)取=0.53d=3.786mm。
圖5.1 滾道截面示意圖
(4)接觸角
鋼球與螺桿滾道接觸點(diǎn)的正壓力方向與螺桿滾道法向截面軸線間的夾角稱為接觸角,角多取為45°,以使軸向力和徑向力分配均勻。
本設(shè)計(jì)取為45°
(5)螺距P和螺旋線導(dǎo)程角
轉(zhuǎn)向盤轉(zhuǎn)動(dòng)角,對(duì)應(yīng)螺母移動(dòng)的距離s為
(5.2)
式中,P為螺紋螺距。
與此同時(shí),齒扇節(jié)圓轉(zhuǎn)過(guò)的弧長(zhǎng)等于s,相應(yīng)搖臂轉(zhuǎn)過(guò)角,期間關(guān)系為
(5.3)
式中,r為齒扇節(jié)圓半徑。
聯(lián)立式(5.2)、(5.3)得,將對(duì)求導(dǎo),得循環(huán)球式轉(zhuǎn)向器角傳動(dòng)比為
(5.4)
由式(5.4)可知,螺距P影響轉(zhuǎn)向器角傳動(dòng)比的值。螺距P一般在811mm內(nèi)選取。
本設(shè)計(jì)選取螺距P為10mm。
在已知螺旋線導(dǎo)程角和螺距的情況下,鋼球中心距D也可由下式求得:
(5.5)
式中 —螺桿與螺母滾道的螺距;
—螺線導(dǎo)程角。
因此根據(jù)式(5.5)反推出螺旋線導(dǎo)程角 為6°
根據(jù)式(5.4)得節(jié)圓半徑
(6)工作鋼球圈數(shù)W
多數(shù)情況下,轉(zhuǎn)向器用兩個(gè)環(huán)路,而每個(gè)環(huán)路的工作鋼球圈數(shù)W又與接觸強(qiáng)度有關(guān):增加工作鋼球圈數(shù),參加工作的鋼球數(shù)增多,能降低接觸應(yīng)力,提高承載能力;但鋼球受力不均勻。螺桿增長(zhǎng)使剛度降低。工作鋼球圈數(shù)有1.5和2.5圈兩種。一個(gè)環(huán)路的工作鋼球圈數(shù)的選取見(jiàn)表5.2
本設(shè)計(jì)選取工作鋼球圈數(shù)W為2.5圈。
(7)導(dǎo)管內(nèi)徑
容納鋼球而且鋼球在其內(nèi)部流動(dòng)的導(dǎo)管內(nèi)徑,式中,e為鋼球直徑d與導(dǎo)管內(nèi)徑之間的間隙。e不易過(guò)大,否則鋼球流經(jīng)導(dǎo)管時(shí)球心偏離導(dǎo)管中心的距離增大,并使流動(dòng)阻力增大。推薦。導(dǎo)管壁厚取為1mm。
本設(shè)計(jì)選取e為0.5mm,所以導(dǎo)管內(nèi)徑為7.644mm。
5.1.2齒條、齒扇傳動(dòng)副的設(shè)計(jì)
首先分析轉(zhuǎn)向器的傳動(dòng)間隙,既齒扇和齒條之間的間隙。該間隙隨轉(zhuǎn)向盤轉(zhuǎn)角的大小不同而改變,這種變化關(guān)系稱為轉(zhuǎn)向器傳動(dòng)副傳動(dòng)間隙特性。研究該特性的意義在于,他與直線行駛的穩(wěn)定性和轉(zhuǎn)向器的使用壽命有關(guān)。
轉(zhuǎn)向器傳動(dòng)副在中間及其附近位置因使用頻繁,磨損速度要比兩端快。在中間附近位置因磨損造成的間隙大到無(wú)法確保直線行駛穩(wěn)定性時(shí),必須經(jīng)調(diào)整消除該處的間隙。調(diào)整后,要求轉(zhuǎn)向盤能圓滑地從中間位置轉(zhuǎn)到兩端,而無(wú)卡住現(xiàn)象。為此,傳動(dòng)副的傳動(dòng)間隙特性,應(yīng)當(dāng)設(shè)計(jì)成在離開(kāi)中間位置以后呈圖5.2所示的逐漸增大的形狀。圖5.2中,曲線1表明轉(zhuǎn)向器在磨損前的間隙變化特性;曲線2表明使用并磨損后的間隙變化特性,并且中間位置已出現(xiàn)較大間隙;曲線3表明調(diào)整后并消除中間位置間隙的轉(zhuǎn)向器傳動(dòng)間隙變化特性。
圖5.2 轉(zhuǎn)向器傳動(dòng)副傳動(dòng)間隙特性
循環(huán)球式轉(zhuǎn)向器的齒條齒扇傳動(dòng)副的傳動(dòng)間隙特性,可通過(guò)將齒扇齒做成不同厚度來(lái)獲取必要的傳動(dòng)間隙,即齒扇由中間齒向兩端齒的齒厚是逐漸減小的。為此可在齒扇的切齒過(guò)程中使毛坯繞工藝中心轉(zhuǎn)動(dòng),如圖5.3所示,相對(duì)于搖臂軸的中心有距離為的偏心。這樣加工的齒扇在齒條的嚙合中由中間齒轉(zhuǎn)向兩端的齒時(shí),齒側(cè)間隙也逐漸加大,可表達(dá)為
(5.6)
式中 ——徑向間隙;
——嚙合角;
——齒扇的分度圓半徑;
——搖臂軸的轉(zhuǎn)角。
當(dāng),確定后,根據(jù)上式可繪制如圖5.4所示的線圖,用于選擇適當(dāng)?shù)膎值,以便使齒條、齒扇傳動(dòng)副兩端齒嚙合時(shí),齒側(cè)間隙能夠適應(yīng)消除中間齒最大磨損量所形成的間隙的需要。
齒條、齒扇傳動(dòng)副各對(duì)嚙合齒齒側(cè)間隙的改變也可以用改變齒條各齒槽寬而不改變齒扇各輪齒齒厚的辦法來(lái)實(shí)現(xiàn)。一般是將齒條(一般有4個(gè)齒)兩側(cè)的齒槽寬制成比中間齒槽大0.20~0.30mm即可。
圖5.3 為獲得變化的齒側(cè)間隙齒扇的加工原理和計(jì)算簡(jiǎn)圖
圖5.4 用于選擇偏心n的線圖
齒扇的齒厚沿齒寬方向變化,故稱為變厚齒扇。其齒形外觀與普通的直齒圓錐齒輪相似。用滾刀加工變厚齒扇的切齒進(jìn)給運(yùn)動(dòng)是滾刀相對(duì)工件作垂向進(jìn)給的同時(shí),還以一定的比例作徑向進(jìn)給,兩者合成為斜向進(jìn)給。這樣即可得到變厚齒扇。變厚齒扇的齒頂及齒根的輪廓面為圓錐面,其分度圓上的齒厚是成比例變化的,形成變厚齒扇,如圖5.5所示。
圖5.5 變厚齒扇的截面
變厚齒扇齒形的計(jì)算,如圖5.6所示,一般將中間剖面A-A規(guī)定為基準(zhǔn)剖面。由A-A剖面向右時(shí),變?yōu)橄禂?shù)為正,向左則變?yōu)橄禂?shù)為零(O-O剖面),再變?yōu)樨?fù)。若O-O剖面距A-A剖面的距離為,則其值為
(5.7)
式中,——在截面A-A處的原始齒形變位系數(shù);
m——模數(shù);
——切削角。
為切削角。常見(jiàn)的有6°30′和7°30′兩種。在切削角一定得條件下,各剖面的變?yōu)橄禂?shù)取決于距離基準(zhǔn)剖面A-A的距離。
前已述,模數(shù)m為5.0mm;法向壓力角,一般在20°~30°之間,根據(jù)表5.2,選為27°30′;切削角為6°30′;齒頂高系數(shù),一般取0.8或1.0,這里取1.0;徑向間隙系數(shù),取0.2;整圓齒數(shù)z,在12~15之間取,取為13;齒扇寬度B,一般在2238mm,取為30mm。列出如下:
圖5.6 變厚齒扇的齒型計(jì)算用圖
整圓齒數(shù);
模數(shù);
法向壓力角
切削角
齒扇寬度
根據(jù)表5.3,列出變厚齒扇的齒形參數(shù):
齒頂高系數(shù)
徑向間隙系數(shù)
齒頂高
徑向間隙
齒根高
全齒高
變位系數(shù)
齒頂圓直徑
分度圓弧齒厚
表5.3 變厚齒扇(A-A)處的齒形參數(shù)選擇與計(jì)算 (mm)
參數(shù)名稱
參數(shù)的選擇與計(jì)算
齒頂高系數(shù)
1.0或0.8
齒頂高
齒根高
齒全高
常見(jiàn)的有6°30′和7°30′
徑向間隙c
變位系數(shù)
齒頂圓直徑D
分度圓弧齒厚
說(shuō)明:基準(zhǔn)截面見(jiàn)圖5.6的截面A—A,為齒扇寬度的中間位置處的截面。
5.1.3循環(huán)球式轉(zhuǎn)向器零件強(qiáng)度計(jì)算
為了保證行駛安全,組成轉(zhuǎn)向系的各零件應(yīng)有足夠的強(qiáng)度。欲驗(yàn)算轉(zhuǎn)向系零件的強(qiáng)度,需首先確定作用在各零件上的力、影響這些力的主要因素有轉(zhuǎn)向軸的負(fù)荷,路面阻力和輪胎氣壓等。為轉(zhuǎn)動(dòng)轉(zhuǎn)向輪要克服的阻力,包括轉(zhuǎn)向輪繞主銷轉(zhuǎn)動(dòng)的阻力,車輪穩(wěn)定阻力。輪胎變形阻力和轉(zhuǎn)向系中的內(nèi)摩擦阻力等。
精確地計(jì)算這些力是困難的,為此推薦足夠精確的半經(jīng)驗(yàn)公式來(lái)計(jì)算汽車在瀝青或者混凝土路面上的原地轉(zhuǎn)向阻力矩(N·mm),即
(5.8)
式中f——輪胎和路面間的滑動(dòng)摩擦因數(shù),一般取0.7
——為轉(zhuǎn)向軸負(fù)荷(N)
P——為輪胎氣壓(MPa)
本設(shè)計(jì)中,輪胎氣壓為0.63MPa,轉(zhuǎn)向軸負(fù)載。代入式(5.8)得
作用在轉(zhuǎn)向盤上的手力為
(5.9)
式中——轉(zhuǎn)向搖臂長(zhǎng)
——轉(zhuǎn)向節(jié)臂長(zhǎng)
——轉(zhuǎn)向盤直徑
——轉(zhuǎn)向器角傳動(dòng)比
——轉(zhuǎn)向器正效率
本設(shè)計(jì)中,轉(zhuǎn)向搖臂長(zhǎng)為200;轉(zhuǎn)向節(jié)臂長(zhǎng)為220;轉(zhuǎn)向盤直徑根據(jù)車型不同,在380550的標(biāo)準(zhǔn)系列內(nèi)選取,查國(guó)家標(biāo)準(zhǔn)可取為400;角傳動(dòng)比為20;循環(huán)球式轉(zhuǎn)向器的傳動(dòng)副為滾動(dòng)摩擦,摩擦損失小,其正效率可達(dá)85%,這里取85%。代入式(5.9)得
確定計(jì)算載荷后,即可計(jì)算轉(zhuǎn)向系零件的強(qiáng)度。
1)鋼球與滾道間的接觸應(yīng)力
≤ (5.10)
式中K——系數(shù),根據(jù)A/B查表5.4求得,其中A/B用下式計(jì)算:
, (5.11)
——鋼球半徑,見(jiàn)圖5.1;本設(shè)計(jì)為3.572
——螺桿與螺母滾道截面的圓弧半徑,見(jiàn)圖5.1;本設(shè)計(jì)為3.786
——螺桿外半徑;本設(shè)計(jì)為14.5
E——材料彈性模量,MPa;
N——每個(gè)鋼球與螺桿滾道之間的正壓力;
(5.12)
——轉(zhuǎn)向盤圓周力;本設(shè)計(jì)為182.175
R——轉(zhuǎn)向盤輪緣半徑;本設(shè)計(jì)為200
——螺桿螺線導(dǎo)程角;本設(shè)計(jì)為6°
——鋼球與滾道間的接觸角;本設(shè)計(jì)為45°
——參與工作的鋼球數(shù);本設(shè)計(jì)為36個(gè)
——鋼球接觸點(diǎn)至螺桿中心線之距離。本設(shè)計(jì)為11.97
由公式(5.12)可得
由公式(5.11)可得A/B=0.046,查表5.4可得K為1.280.
由公式(5.10)可得
表5.4 系數(shù)K與A/B的關(guān)系 mm
A/B
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
K
0.388
0.40
0.41
0.44
0.468
0.490
0.536
0.600
A/B
0.20
0.15
0.10
0.05
0.02
0.01
0.007
一一
K
0.716
0.800
0.970
1.280
1.800
2.271
3.202
一一
當(dāng)鋼球與滾道的接觸表面的硬度為HRC58~64時(shí),許用接觸應(yīng)力可取為3000~3500MPa。顯然,≤,符合要求。
當(dāng)由式鋼球工作總?cè)?shù)2.5時(shí),則應(yīng)采用圈數(shù)及鋼球數(shù)相同的兩個(gè)獨(dú)立的環(huán)路,以使載荷能較均勻地分布于各鋼球并保持較高的傳動(dòng)效率。但鋼球總數(shù) (包括在鋼球?qū)Ч苤械?不應(yīng)超過(guò)60個(gè)。否則應(yīng)加大鋼球直徑并重新計(jì)算。
徑向間隙(見(jiàn)圖5.1)不應(yīng)大于0.02~0.03mm。亦可用下式計(jì)算:
(5.13)
本設(shè)計(jì)取為0.02
軸向間隙可用下式計(jì)算:
(5.14)
式中 ——鋼球直徑
由式(5.14)可得
2)齒的彎曲應(yīng)力
齒扇齒的彎曲應(yīng)力為
(5.15)
式中 F——作用在齒扇上的圓周力
h——齒扇的齒高,本設(shè)計(jì)為11mm
B——齒扇的齒寬,本設(shè)計(jì)為30mm
S——基圓齒厚,本設(shè)計(jì)為8.6mm
作用在齒扇上的圓周力F
(5.16)
式中 —轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的力傳動(dòng)比,本設(shè)計(jì)為2
—轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的效率,一般取0.85~0.9。本設(shè)計(jì)中取為0.9;
—即轉(zhuǎn)向阻力矩,本設(shè)計(jì)中;
—齒扇節(jié)圓半徑,本設(shè)計(jì)中=30.33。
代入式(5.16)得
再代入式(5.15)得
許用彎曲應(yīng)力為,顯然,符合要求。
螺桿和螺母用鋼制造。表面滲碳。對(duì)于前軸負(fù)荷不大的汽車,滲碳層深度在。
5.2整體式轉(zhuǎn)向梯形結(jié)構(gòu)優(yōu)化設(shè)計(jì)
在忽略側(cè)偏角影響的條件下,兩轉(zhuǎn)向前輪軸線的延長(zhǎng)線交在后軸延長(zhǎng)線上,如圖5.7所示。
設(shè)θi、θo分別為內(nèi)、外轉(zhuǎn)向車輪轉(zhuǎn)角,L為汽車軸距,K為兩主銷中心線延長(zhǎng)線到地面交點(diǎn)之間的距離。
若要保證全部車輪繞一個(gè)瞬時(shí)轉(zhuǎn)向中心行駛,則梯形機(jī)構(gòu)應(yīng)保證內(nèi)、外轉(zhuǎn)向車輪的轉(zhuǎn)角有如下關(guān)系
(5.17)
若自變角為θo,則因變角θi的期望值為
(5.18)
圖5.7 理想的內(nèi)外輪轉(zhuǎn)角關(guān)系簡(jiǎn)圖
現(xiàn)有轉(zhuǎn)向梯形機(jī)構(gòu)僅能近似滿足上式關(guān)系。以圖5.7所示的后置梯形機(jī)構(gòu)為例,利用余弦定理可推得轉(zhuǎn)向梯形所給出的實(shí)際因變角為
(5.19)
式中 m——梯形臂長(zhǎng)
——梯形底角
所設(shè)計(jì)的轉(zhuǎn)向梯形給出的實(shí)際因變角,應(yīng)盡可能接近理論上的期望值。其偏差在最常使用的中間位置附近小角范圍內(nèi)應(yīng)盡量小,以減少高速行駛時(shí)輪胎的磨損;而在不經(jīng)常使用且車速較低的最大轉(zhuǎn)角時(shí),可適當(dāng)放寬要求。因此,再引入加權(quán)因子,構(gòu)成評(píng)價(jià)設(shè)計(jì)優(yōu)劣的目標(biāo)函數(shù)為
(5.20)
將式(5.18)、式(5.19)代人式(5.20)得
(5.21)