臥式鉆孔組合機(jī)床液壓系統(tǒng)設(shè)計(jì)含4張CAD圖帶開題
臥式鉆孔組合機(jī)床液壓系統(tǒng)設(shè)計(jì)含4張CAD圖帶開題,臥式,鉆孔,組合,機(jī)床,液壓,系統(tǒng),設(shè)計(jì),cad,開題
XXXX
設(shè)計(jì)(XXX)開題報(bào)告書
課題名稱 臥式鉆孔組合機(jī)床液壓系統(tǒng)設(shè)計(jì)
學(xué)生姓名
學(xué) 號(hào)
院(系)、專業(yè)
指導(dǎo)教師
20XX年 月 日
一、 課題的意義
近十年來,液壓傳動(dòng)在防漏、治污、降噪、節(jié)能和材質(zhì)研究等各個(gè)方面都有長(zhǎng)足的進(jìn)步,它和電子技術(shù)的結(jié)合也由拼裝、混合到整合,步步深入。時(shí)至今日,在盡可能小的空間內(nèi)傳出盡可能大的功率并加以精確控制這一點(diǎn)上,液壓傳動(dòng)已穩(wěn)居各種傳動(dòng)方式之首,無可替代。因此研究液壓系統(tǒng)是十分必要的。
通過對(duì)臥式鉆孔組合機(jī)床的原有液壓系統(tǒng)的分析和了解,結(jié)合已學(xué)的液壓方面的知識(shí),對(duì)液壓系統(tǒng)的結(jié)構(gòu)、設(shè)計(jì)等方面的知識(shí)有更進(jìn)一步的提高和認(rèn)識(shí)。
二、 國(guó)內(nèi)外發(fā)展?fàn)顩r
液壓傳動(dòng)相對(duì)于機(jī)械傳動(dòng)來說,它是一門新學(xué)科,從17世紀(jì)中葉帕斯卡提出靜壓傳動(dòng)原理,18世紀(jì)末英國(guó)制成第一臺(tái)水壓機(jī)算起,液壓傳動(dòng)已有2~3百年的歷史,只是由于早期技術(shù)水平和生產(chǎn)需求的不足,液壓傳動(dòng)技術(shù)沒有得到普遍地應(yīng)用。隨著科學(xué)技術(shù)的不斷發(fā)展,對(duì)傳動(dòng)技術(shù)的要求越來越高,液壓傳動(dòng)技術(shù)自身也在不斷發(fā)展,特別是在第二次世界大戰(zhàn)期間及戰(zhàn)后,由于軍事及建設(shè)需求的刺激,液壓技術(shù)日趨成熟。
第二次世界大戰(zhàn)前后,成功地將液壓傳動(dòng)裝置用于艦艇炮塔轉(zhuǎn)向器,其后出現(xiàn)了液壓六角車床和磨床,一些通用機(jī)床到本世紀(jì)30年代才用上了液壓傳動(dòng)。第二次世界大戰(zhàn)期間,在兵器上采用了功率大、反應(yīng)快、動(dòng)作準(zhǔn)的液壓傳動(dòng)和控制裝置,它大大提高了兵器的性能,也大大促進(jìn)了液壓技術(shù)的發(fā)展。戰(zhàn)后,液壓技術(shù)迅速轉(zhuǎn)向民用,并隨著各種標(biāo)準(zhǔn)的不斷制訂和完善及各類元件的標(biāo)準(zhǔn)化、規(guī)格化、系列化而在機(jī)械制造,工程機(jī)械、農(nóng)業(yè)機(jī)械、汽車制造等行業(yè)中推廣開來。近30年來,由于原子能技術(shù)、航空航天技術(shù)、控制技術(shù)、材料科學(xué)、微電子技術(shù)等學(xué)科的發(fā)展,再次將液壓技術(shù)推向前進(jìn),使它發(fā)展成為包括傳動(dòng)、控制、檢測(cè)在內(nèi)的一門完整的自動(dòng)化技術(shù),在國(guó)民經(jīng)濟(jì)的各個(gè)部門都得到了應(yīng)用,如工程機(jī)械、數(shù)控加工中心、冶金自動(dòng)線等。采用液壓傳動(dòng)的程度已成為衡量一個(gè)國(guó)家工業(yè)水平的重要標(biāo)志之一。
今天,為了和最新技術(shù)的發(fā)展保持同步,液壓技術(shù)必須不斷創(chuàng)新不斷的提高和改進(jìn)元件和系統(tǒng)的性能,以滿足日益變化的市場(chǎng)需求。液壓技術(shù)的持續(xù)發(fā)展體現(xiàn)在如下一些重要的特征上:
(1)提高元件性能,創(chuàng)新新型元件,不斷小型化和微型化。
(2)高度的組合化、集成化和模塊化。
(3)和微電子技術(shù)相結(jié)合,走向智能化。
(4)研究和開發(fā)特殊傳動(dòng)介質(zhì),推進(jìn)工作介質(zhì)多元化。
液壓傳動(dòng)和液力傳動(dòng)均是以液體作為工作介質(zhì)來進(jìn)行能量傳遞的傳動(dòng)方式。液壓傳動(dòng)主要是利用液體的壓力能來傳遞能量;而液力傳動(dòng)則主要是利用液體的動(dòng)能來傳遞能量。由于液壓傳動(dòng)有許多突出的優(yōu)點(diǎn),因此,它被廣泛地應(yīng)用于機(jī)械制造、工程建筑、石油化工、交通運(yùn)輸、軍事器械、礦山冶金、輕工、農(nóng)機(jī)、漁業(yè)、林業(yè)等各方面。同時(shí),也被應(yīng)用到航天航空、海洋開發(fā)、核能工程和地震預(yù)測(cè)等各個(gè)工程技術(shù)領(lǐng)域。近年來我國(guó)國(guó)內(nèi)液壓技術(shù)有很大的提高,不再單純地使用國(guó)外的液壓技術(shù)進(jìn)行加工。
三、 本課題的研究?jī)?nèi)容、方法、手段及預(yù)期成果
內(nèi)容:臥式鉆孔組合機(jī)床的液壓系統(tǒng)的總體設(shè)計(jì),主要是明確系統(tǒng)設(shè)計(jì)要求,確定液壓系統(tǒng)的主要參數(shù),進(jìn)行工況分析,擬定和分析液壓系統(tǒng)的傳動(dòng)方案,繪制液壓系統(tǒng)工作原理圖,計(jì)算和設(shè)計(jì)主要液壓元件,液壓系統(tǒng)性能驗(yàn)算,編寫說明書。本設(shè)計(jì)以一臺(tái)臥式半自動(dòng)專用銑床為例,要求設(shè)計(jì)出驅(qū)動(dòng)它的動(dòng)力滑臺(tái)的液壓系統(tǒng),以實(shí)現(xiàn)“手工上料→按電鈕開始→自動(dòng)定位夾緊→工作臺(tái)快進(jìn)→銑削進(jìn)給→鞏固總臺(tái)快退→夾具松開→手工卸料”的工作循環(huán)。
可分為以下幾個(gè)部分:
1)液壓系統(tǒng)原理圖的設(shè)計(jì);
2)液壓元件的計(jì)算與選擇;
3)裝配圖的設(shè)計(jì)與計(jì)算;
方法、手段:
1) 了解臥式鉆孔組合機(jī)床液壓系統(tǒng)的組成及功能,
2) 根據(jù)工作數(shù)據(jù)分析負(fù)載和運(yùn)動(dòng),得出執(zhí)行元件參數(shù);
3) 設(shè)計(jì)液壓系統(tǒng)原理圖,計(jì)算和選擇液壓元件;
4) 驗(yàn)算液壓系統(tǒng)性能;
預(yù)期成果:本次設(shè)計(jì)屬于機(jī)械類科目,這一課題涉及液壓傳動(dòng)、力學(xué)、計(jì)算機(jī)制圖等多方面的知識(shí),通過這次設(shè)計(jì)不僅能夠使我綜合運(yùn)用所學(xué)的專業(yè)知識(shí),加深對(duì)知識(shí)的理解和運(yùn)用,而且鍛煉我的實(shí)際手動(dòng)能力和創(chuàng)新能力。進(jìn)一步加深了我對(duì)液壓系統(tǒng)工作原理的理解,使我更全面的了解半自動(dòng)專用液壓系統(tǒng)設(shè)計(jì)過程以及銑床在工作過程中的要求。
四、任務(wù)安排的階段安排及時(shí)間安排和完成任務(wù)所具備的條件因素及參考文獻(xiàn):
1)時(shí)間安排 第1—2周:實(shí)習(xí),查找收集相關(guān)資料,分析相關(guān)資料,制定研究,設(shè)計(jì)提綱;
第3—7周:完成設(shè)計(jì)初稿,審核;
第8—10周:完善設(shè)計(jì)初稿;
第11—12周:終審;
第13周:準(zhǔn)備論文答辯。
2)完成任務(wù)所具備的條件因素:
結(jié)合所學(xué)知識(shí),查閱學(xué)校圖書館中相關(guān)圖書及資料,并運(yùn)用計(jì)算機(jī)及網(wǎng)絡(luò)查詢相關(guān)信息。設(shè)計(jì)中遇到的疑難問題,及時(shí)與老師和同學(xué)探討、交流,爭(zhēng)取圓滿完成設(shè)計(jì)任務(wù)。
3)參考文獻(xiàn)
[1] 劉衛(wèi)國(guó)主編.MATLAB程序設(shè)計(jì)與應(yīng)用(第二版)[M].北京:高等教育出版社,2006.7
[2] 許賢良,王傳禮主編.液壓傳動(dòng)系統(tǒng)[M].北京:國(guó)防工業(yè)出版社,2008.5
[3] 王積偉等主編.液壓傳動(dòng)(第二版)[M].北京:機(jī)械工業(yè)出版社,2006.12
[4] 許福玲主編.液壓與氣壓傳動(dòng)(第三版)[M].北京:機(jī)械工業(yè)出版社,2007.5
[5] 袁子榮主編.液壓傳動(dòng)與控制[M].重慶:重慶大學(xué)出版社,2006.7
[6] 宋學(xué)義主編.袖珍液壓氣動(dòng)手冊(cè)[M].北京:機(jī)械工業(yè)出版社,1995.6-96
[7] 雷天覺主編.液壓工程手冊(cè)[M].北京:機(jī)械工業(yè)出版社,1990
[8] 王守成,段俊勇主編.液壓元件及選用[M].北京:化學(xué)工業(yè)出版社.2007.4
[9] 成大先主編.機(jī)械設(shè)計(jì)手冊(cè)[M].北京:化學(xué)工業(yè)出版社,2004
[10] 李壯云主編.液壓氣動(dòng)與液力工程手冊(cè)(上冊(cè))[M].北京:電子工業(yè)出版社,2008.2 3-4
[11] 路涌祥主編.液壓氣動(dòng)技術(shù)手冊(cè)[M].北京:機(jī)械工業(yè)出版社,1979
[12] 何存興.液壓元件[M].北京:機(jī)械工業(yè)出版社,1982
[13] 李壯云,葛宜遠(yuǎn).液壓元件與系統(tǒng)[M].北京:機(jī)械工業(yè)出版社,1999
[14] 盛敬超主編.工程流體力學(xué)[M].北京:機(jī)械工業(yè)出版社,1988
[15] 雷天覺主編.新編液壓工程手冊(cè)[M].北京理工大學(xué)出版社,2006.338
[16] 張利平主編.液壓氣動(dòng)技術(shù)速查手冊(cè)[M].北京:化學(xué)工業(yè)出版社,2006.12
[17] 章宏甲編.液壓與氣壓傳動(dòng)[M].北京:機(jī)械工業(yè)出版社,2001.6.50-68
五、指導(dǎo)教師審查意見
指導(dǎo)教師(簽名)
年 月 日
六、教研室審查意見
教研室主任(簽名)
年 月 日
七、院(系)審查意見
院(系)主任(簽名)
年 月 日
備 注
XXXX
(XX)任務(wù)書
課程名稱: 臥式鉆孔組合機(jī)床液壓系統(tǒng)設(shè)計(jì)
進(jìn)行日期 20XX 年 06 月13 日至 20XX 年 09 月 16 日
學(xué)生姓名:
專業(yè)班級(jí):
指導(dǎo)教師:
所屬站名:
站 長(zhǎng):
第1頁
課題主要參數(shù)及依據(jù):
液壓技術(shù)是現(xiàn)代機(jī)械工程的基本技術(shù)構(gòu)成和現(xiàn)代控制工程的基本技術(shù)要素,應(yīng)用液壓技術(shù)的程度已經(jīng)成為衡量一個(gè)國(guó)家工業(yè)化水平的重要標(biāo)志之一,所以正確、合理地提高設(shè)計(jì)和使用液壓系統(tǒng),具有十分重要的意義。同時(shí)讓同學(xué)們學(xué)習(xí)到的理論知識(shí)運(yùn)用到實(shí)踐中,提高實(shí)踐能力,使我們的設(shè)計(jì)更具實(shí)用性。
一、課題研究的主要內(nèi)容、目的和意義
主要研究臥式鉆孔組合機(jī)床的液壓系統(tǒng),加工對(duì)象為變速箱體孔,加工動(dòng)作循環(huán)為:動(dòng)力滑臺(tái)快速趨近工件->工進(jìn)Ι->工進(jìn)Ⅱ->加工結(jié)束快退->原位停止。研究?jī)?nèi)容分為以下幾個(gè)部分:
(1) 液壓系統(tǒng)原理圖的設(shè)計(jì);
(2) 液壓元件的計(jì)算與選擇;
(3) 裝配圖的設(shè)計(jì)與計(jì)算;
通過對(duì)臥式鉆孔組合機(jī)床的原有液壓系統(tǒng)的分析和了解,結(jié)合已學(xué)的液壓方面的知識(shí),對(duì)液壓系統(tǒng)的結(jié)構(gòu)、設(shè)計(jì)等方面的知識(shí)有更進(jìn)一步的認(rèn)識(shí)和提高。
二、液壓系統(tǒng)的原始數(shù)據(jù)
工進(jìn)Ι時(shí)軸向阻力為F1=13000N,速度為(80-95) mm/min;工進(jìn)Ⅱ時(shí)軸向阻力為F2=7500N,速度為(30-45) mm/min;快進(jìn)、快退速度為3.2m/min,加減速時(shí)間為0.2s;滑臺(tái)運(yùn)動(dòng)部件質(zhì)量為500Kg,全行程為305mm(快進(jìn)為200mm,工進(jìn)Ι為100mm,工進(jìn)Ⅱ?yàn)?mm)?;_(tái)導(dǎo)軌采用平導(dǎo)軌,靜摩擦系數(shù)為0.2,動(dòng)摩擦系數(shù)為0.15,要求工作性能可靠、平穩(wěn),液壓缸效率取值0.95。
三、設(shè)計(jì)要求
1、設(shè)計(jì)計(jì)算說明書一份;
2、液壓系統(tǒng)原理圖一張;(圖形符號(hào)符合GB786.1-93)
3、液壓系統(tǒng)典型零件裝配圖一份;
4、典型零件圖若干;
第2頁
進(jìn) 度 表
起止日期
內(nèi)容提要
備 注
第1-2周
第3-7周
第8-10周
第11-12周
第13周
收集資料、分析相關(guān)材料
制定研究、設(shè)計(jì)提綱
完成設(shè)計(jì)初稿、審核
完善設(shè)計(jì)初稿
終審
準(zhǔn)備論文答辯
第3頁
XXX
設(shè)計(jì)(XXX)開題報(bào)告書
課題名稱 臥式鉆孔組合液壓系統(tǒng)設(shè)計(jì)
學(xué)生姓名
學(xué) 號(hào)
院(系)、專業(yè)
指導(dǎo)教師
20XX年6月13日
一、 課題的意義
近十年來,液壓傳動(dòng)在防漏、治污、降噪、節(jié)能和材質(zhì)研究等各個(gè)方面都有長(zhǎng)足的進(jìn)步,它和電子技術(shù)的結(jié)合也由拼裝、混合到整合,步步深入。時(shí)至今日,在盡可能小的空間內(nèi)傳出盡可能大的功率并加以精確控制這一點(diǎn)上,液壓傳動(dòng)已穩(wěn)居各種傳動(dòng)方式之首,無可替代。因此研究液壓系統(tǒng)是十分必要的。
通過對(duì)半自動(dòng)專用銑床的原有液壓系統(tǒng)的分析和了解,結(jié)合已學(xué)的液壓方面的知識(shí),對(duì)液壓系統(tǒng)的結(jié)構(gòu)、設(shè)計(jì)等方面的知識(shí)有更進(jìn)一步的提高和認(rèn)識(shí)。
二、 國(guó)內(nèi)外發(fā)展?fàn)顩r
液壓傳動(dòng)相對(duì)于機(jī)械傳動(dòng)來說,它是一門新學(xué)科,從17世紀(jì)中葉帕斯卡提出靜壓傳動(dòng)原理,18世紀(jì)末英國(guó)制成第一臺(tái)水壓機(jī)算起,液壓傳動(dòng)已有2~3百年的歷史,只是由于早期技術(shù)水平和生產(chǎn)需求的不足,液壓傳動(dòng)技術(shù)沒有得到普遍地應(yīng)用。隨著科學(xué)技術(shù)的不斷發(fā)展,對(duì)傳動(dòng)技術(shù)的要求越來越高,液壓傳動(dòng)技術(shù)自身也在不斷發(fā)展,特別是在第二次世界大戰(zhàn)期間及戰(zhàn)后,由于軍事及建設(shè)需求的刺激,液壓技術(shù)日趨成熟。
第二次世界大戰(zhàn)前后,成功地將液壓傳動(dòng)裝置用于艦艇炮塔轉(zhuǎn)向器,其后出現(xiàn)了液壓六角車床和磨床,一些通用機(jī)床到本世紀(jì)30年代才用上了液壓傳動(dòng)。第二次世界大戰(zhàn)期間,在兵器上采用了功率大、反應(yīng)快、動(dòng)作準(zhǔn)的液壓傳動(dòng)和控制裝置,它大大提高了兵器的性能,也大大促進(jìn)了液壓技術(shù)的發(fā)展。戰(zhàn)后,液壓技術(shù)迅速轉(zhuǎn)向民用,并隨著各種標(biāo)準(zhǔn)的不斷制訂和完善及各類元件的標(biāo)準(zhǔn)化、規(guī)格化、系列化而在機(jī)械制造,工程機(jī)械、農(nóng)業(yè)機(jī)械、汽車制造等行業(yè)中推廣開來。近30年來,由于原子能技術(shù)、航空航天技術(shù)、控制技術(shù)、材料科學(xué)、微電子技術(shù)等學(xué)科的發(fā)展,再次將液壓技術(shù)推向前進(jìn),使它發(fā)展成為包括傳動(dòng)、控制、檢測(cè)在內(nèi)的一門完整的自動(dòng)化技術(shù),在國(guó)民經(jīng)濟(jì)的各個(gè)部門都得到了應(yīng)用,如工程機(jī)械、數(shù)控加工中心、冶金自動(dòng)線等。采用液壓傳動(dòng)的程度已成為衡量一個(gè)國(guó)家工業(yè)水平的重要標(biāo)志之一。
今天,為了和最新技術(shù)的發(fā)展保持同步,液壓技術(shù)必須不斷創(chuàng)新不斷的提高和改進(jìn)元件和系統(tǒng)的性能,以滿足日益變化的市場(chǎng)需求。液壓技術(shù)的持續(xù)發(fā)展體現(xiàn)在如下一些重要的特征上:
(1)提高元件性能,創(chuàng)新新型元件,不斷小型化和微型化。
(2)高度的組合化、集成化和模塊化。
(3)和微電子技術(shù)相結(jié)合,走向智能化。
(4)研究和開發(fā)特殊傳動(dòng)介質(zhì),推進(jìn)工作介質(zhì)多元化。
液壓傳動(dòng)和液力傳動(dòng)均是以液體作為工作介質(zhì)來進(jìn)行能量傳遞的傳動(dòng)方式。液壓傳動(dòng)主要是利用液體的壓力能來傳遞能量;而液力傳動(dòng)則主要是利用液體的動(dòng)能來傳遞能量。由于液壓傳動(dòng)有許多突出的優(yōu)點(diǎn),因此,它被廣泛地應(yīng)用于機(jī)械制造、工程建筑、石油化工、交通運(yùn)輸、軍事器械、礦山冶金、輕工、農(nóng)機(jī)、漁業(yè)、林業(yè)等各方面。同時(shí),也被應(yīng)用到航天航空、海洋開發(fā)、核能工程和地震預(yù)測(cè)等各個(gè)工程技術(shù)領(lǐng)域。近年來我國(guó)國(guó)內(nèi)液壓技術(shù)有很大的提高,不再單純地使用國(guó)外的液壓技術(shù)進(jìn)行加工。
三、 本課題的研究?jī)?nèi)容、方法、手段及預(yù)期成果
內(nèi)容:半自動(dòng)專用銑床的液壓系統(tǒng)的總體設(shè)計(jì),主要是明確系統(tǒng)設(shè)計(jì)要求,確定液壓系統(tǒng)的主要參數(shù),進(jìn)行工況分析,擬定和分析液壓系統(tǒng)的傳動(dòng)方案,繪制液壓系統(tǒng)工作原理圖,計(jì)算和設(shè)計(jì)主要液壓元件,液壓系統(tǒng)性能驗(yàn)算,編寫說明書。本設(shè)計(jì)以一臺(tái)臥式半自動(dòng)專用銑床為例,要求設(shè)計(jì)出驅(qū)動(dòng)它的動(dòng)力滑臺(tái)的液壓系統(tǒng),以實(shí)現(xiàn)“手工上料→按電鈕開始→自動(dòng)定位夾緊→工作臺(tái)快進(jìn)→銑削進(jìn)給→鞏固總臺(tái)快退→夾具松開→手工卸料”的工作循環(huán)。
可分為以下幾個(gè)部分:
1)液壓系統(tǒng)原理圖的設(shè)計(jì);
2)液壓元件的計(jì)算與選擇;
3)裝配圖的設(shè)計(jì)與計(jì)算;
方法、手段:
1) 了解半自動(dòng)專用銑床液壓系統(tǒng)的組成及功能,
2) 根據(jù)工作數(shù)據(jù)分析負(fù)載和運(yùn)動(dòng),得出執(zhí)行元件參數(shù);
3) 設(shè)計(jì)液壓系統(tǒng)原理圖,計(jì)算和選擇液壓元件;
4) 驗(yàn)算液壓系統(tǒng)性能;
預(yù)期成果:本次設(shè)計(jì)屬于機(jī)械類科目,這一課題涉及液壓傳動(dòng)、力學(xué)、計(jì)算機(jī)制圖等多方面的知識(shí),通過這次設(shè)計(jì)不僅能夠使我綜合運(yùn)用所學(xué)的專業(yè)知識(shí),加深對(duì)知識(shí)的理解和運(yùn)用,而且鍛煉我的實(shí)際手動(dòng)能力和創(chuàng)新能力。進(jìn)一步加深了我對(duì)液壓系統(tǒng)工作原理的理解,使我更全面的了解半自動(dòng)專用液壓系統(tǒng)設(shè)計(jì)過程以及銑床在工作過程中的要求。
四、任務(wù)安排的階段安排及時(shí)間安排和完成任務(wù)所具備的條件因素及參考文獻(xiàn):
1)時(shí)間安排
第1—2周:實(shí)習(xí),查找收集相關(guān)資料,分析相關(guān)資料,制定研究,設(shè)計(jì)提綱;
第3—7周:完成設(shè)計(jì)初稿,審核;
第8—10周:完善設(shè)計(jì)初稿;
第11—12周:終審;
第13周:準(zhǔn)備論文答辯。
2)完成任務(wù)所具備的條件因素:
結(jié)合所學(xué)知識(shí),查閱學(xué)校圖書館中相關(guān)圖書及資料,并運(yùn)用計(jì)算機(jī)及網(wǎng)絡(luò)查詢相關(guān)信息。設(shè)計(jì)中遇到的疑難問題,及時(shí)與老師和同學(xué)探討、交流,爭(zhēng)取圓滿完成設(shè)計(jì)任務(wù)。
3)參考文獻(xiàn)
[1].何慶編著.《機(jī)械制造專業(yè)畢業(yè)設(shè)計(jì)指導(dǎo)與范例》. 化學(xué)工業(yè)出版社,2008
[2].大連組合機(jī)床研究所編.《組合機(jī)床設(shè)計(jì)參考圖冊(cè)》.北京:機(jī)械工業(yè)出版社,1975
[3].李家寶編.《夾具設(shè)計(jì)》.機(jī)械工業(yè)出版社,1961
[4].沈陽工業(yè)大學(xué),大連鐵道學(xué)院等編.《組合機(jī)床設(shè)計(jì)》.1985.09
[5].謝家瀛主編.《組合機(jī)床設(shè)計(jì)簡(jiǎn)明手冊(cè)》.機(jī)械工業(yè)出版社, 1994
[6].路永明,武漢民編.《新編機(jī)械設(shè)計(jì)手冊(cè)》.石油大學(xué)出版社,1990
[7].《金屬機(jī)械加工工藝人員手冊(cè)》.上??茖W(xué)技術(shù)出版社,1981
[8].趙如福主編.《機(jī)械加工工藝人員手冊(cè)》.上??萍汲霭嫔纾?990
[9].艾興,肖詩綱編.《切削用量簡(jiǎn)明手冊(cè)》.機(jī)械工業(yè)出版社, 1985
[10].大連組合機(jī)床研究所編.《組合機(jī)床設(shè)計(jì)》.北京機(jī)械工業(yè)出版社,1975
[11].金鈴,劉玉光等編著.《畫法幾何及機(jī)械制圖》.黑龍江人民出版社, 2003
[12].唐宗軍主編.《機(jī)械制造基礎(chǔ)》.機(jī)械工業(yè)出版社,2008
[13].東北重型機(jī)械學(xué)院等編.《機(jī)床夾具設(shè)計(jì)手冊(cè)》.上海:上??萍汲霭嫔纾?988
[14].王世清主編.《深孔加工技術(shù)》.2003.10
[15].王峻.《20世紀(jì)深孔加工技術(shù)的興衰及新突破》.《機(jī)械管理開發(fā)》.總第79期.2004.08
[16].吳昊川.《深孔加工關(guān)鍵技術(shù)在實(shí)際生產(chǎn)中的研究與應(yīng)用》.2010年第20卷第4期
[17].李益民.《機(jī)械制造工藝設(shè)計(jì)簡(jiǎn)明手冊(cè)》[M].北京:機(jī)械工業(yè)出版社,1998
[18].王積偉.《液壓傳動(dòng)》(第二版).機(jī)械工業(yè)出版社,2007-4-1
[19].E.G.Hoffman.JIGS AND FIXTURE DESIGN[M].London,1990
[20].L.Zhu.The reseach of the deep-hole strong honing titanium alloy. Key
Engineering Materials .2001
[21].John J. Craig. Introduction to Robotics: Mechanics and Control, 2rd ed.,
Wesley Publishing Company, 1988.
[22].Lee C S G,Ziegler M.A Geometric Approach in Solving the Inverse
Kinematics of PUMP Robots[C].In:IEEE Trans.Aerospace and Electronic
Systems,1984.ASE-20(6):695-706
五、指導(dǎo)教師審查意見
指導(dǎo)教師(簽名)
年 月 日
六、教研室審查意見
教研室主任(簽名)
年 月 日
七、院(系)審查意見
院(系)主任(簽名)
年 月 日
備 注
臥式鉆孔組合機(jī)床液壓系統(tǒng)設(shè)計(jì)
摘 要
組合機(jī)床是以大量的通用部件為基礎(chǔ),配以少量的按被加工零件特殊要求而設(shè)計(jì)的專用部件,以實(shí)現(xiàn)對(duì)一種或幾種零件按預(yù)先確定的工序進(jìn)行加工的高效機(jī)床。它既具有專用機(jī)床的結(jié)構(gòu)簡(jiǎn)單、生產(chǎn)率及自動(dòng)化程度較高的特點(diǎn),又具有一定的重新調(diào)整能力,以適應(yīng)工件變化的要求,是當(dāng)今制造業(yè)應(yīng)用很廣的一類機(jī)床。
在明確設(shè)計(jì)目的的基礎(chǔ)上,以臥式鉆孔組合機(jī)床為對(duì)象,依據(jù)液壓系統(tǒng)設(shè)計(jì)的基本原理,擬出合理的液壓系統(tǒng)圖,通過系統(tǒng)主要參數(shù)的計(jì)算確定了液壓元件的規(guī)格,并對(duì)設(shè)計(jì)的原理圖的優(yōu)缺點(diǎn)做了簡(jiǎn)單的概括,驗(yàn)算了液壓系統(tǒng)的性能。最后對(duì)整個(gè)設(shè)計(jì)過程做了總結(jié),對(duì)設(shè)計(jì)過程中出現(xiàn)的問題、設(shè)計(jì)的液壓系統(tǒng)的不足進(jìn)行了思考并對(duì)未來的工作作了展望。
關(guān)鍵詞:組合機(jī)床、臥式、鉆孔、液壓系統(tǒng)
Abstract
The modular machine tools is a lot of common parts for the foundation, was supported by a small number of special requirements for the processing parts and components for the design, to achieve one or more of the components of the pre-set process for the efficient processing machine. It has a dedicated machine simple structure, productivity and a higher degree of automation features, but also has a re-adjustment ability to adapt to changing requirements of the work piece.
In the clear on the basis of the design purpose, Using one-side bore modular machine tool as an object According to hydraulic system design basic principle, Formulates the reasonable schematic diagram, Determined the hydraulic pressure part specification through the system main parameter computation, checking the hydraulic system performance. Finally, the entire design process to do a summary of the design process problems, inadequate design of the hydraulic system had been thinking and future work prospects.
Key words:modular machine tool,horizontal type,bore,fluid drive
目 錄
第1章 引言 1
1.1 組合機(jī)床簡(jiǎn)介 1
1.2 主要研究?jī)?nèi)容 4
1.3 本章小結(jié) 5
第2章 液壓系統(tǒng)設(shè)計(jì) 6
2.1 設(shè)計(jì)引言 6
2.2 設(shè)計(jì)要求 6
2.3 負(fù)載與運(yùn)動(dòng)分析 6
2.4 確定執(zhí)行元件主要參數(shù) 8
2.5 設(shè)計(jì)液壓系統(tǒng)方案和擬定液壓系統(tǒng)原理圖 11
2.5.1 設(shè)計(jì)液壓系統(tǒng)方案 11
2.5.2 選擇基本回路 13
2.5.3選擇速度換接回路 14
2.6 計(jì)算和選擇液壓元件 16
2.6.1 液壓泵 16
2.6.2 閥類元件及輔助元件 17
2.6.3 油管 18
2.6.4 油箱 19
2.7 本章小結(jié) 19
第3章 驗(yàn)算液壓系統(tǒng)性能 21
3.1 驗(yàn)算系統(tǒng)壓力損失 21
3.2 驗(yàn)算系統(tǒng)發(fā)熱與溫升 24
結(jié) 論 26
致 謝 27
參考文獻(xiàn) 28
附 錄………………………………………………………………………30
千萬不要?jiǎng)h除行尾的分節(jié)符,此行不會(huì)被打印。在目錄上點(diǎn)右鍵“更新域”,然后“更新整個(gè)目錄”。打印前,不要忘記把上面“Abstract”這一行后加一空行
- -
第1章 引言
1.1 組合機(jī)床簡(jiǎn)介
我國(guó)的傳統(tǒng)的組合機(jī)床及組合機(jī)床自動(dòng)線主要采用機(jī)、電、氣、液壓控制,它的加工對(duì)象主要是生產(chǎn)批量比較大的大中型的箱體類和軸類零件(近年研制的組合機(jī)床加工連桿、板件等也占一定份額),完成鉆孔、擴(kuò)孔、鉸孔,加工各種螺紋、鏜孔、車端面和凸臺(tái),在孔內(nèi)鏜各種形狀槽,以及銑削平面和成型面等。組合機(jī)床的分類繁多,有大型組合機(jī)床和小型組合機(jī)床,有單面、雙面、三面、臥式、立式、傾斜式、復(fù)合式,還有多工位回轉(zhuǎn)臺(tái)組合機(jī)床等;隨著技術(shù)的不斷是進(jìn)步,一種新型的組合機(jī)床——柔性組合機(jī)床越來越受人們是親昧,它應(yīng)用多位主軸箱、可換主軸箱、編碼隨行夾具和刀具的自動(dòng)更換,配以可編程序控制器(PLC)、數(shù)字控制(NC)等,能任意改變工作循環(huán)控制和驅(qū)動(dòng)系統(tǒng),并能靈活適應(yīng)多種加工的可調(diào)可變的組合機(jī)床。另外,近年來組合機(jī)床加工中心、數(shù)控組合機(jī)床、機(jī)床輔機(jī)等在組合機(jī)床行業(yè)中所占份額也越來越大。
組合機(jī)床一般采用多軸、多刀、多工序、多面或多工位同時(shí)加工的方式,生產(chǎn)效率比通用機(jī)床高幾倍至幾十倍。由于通用部件已經(jīng)標(biāo)準(zhǔn)化和系列化,可根據(jù)需要靈活配置,能縮短設(shè)計(jì)和制造周期。因此,組合機(jī)床兼有低成本和高效率的優(yōu)點(diǎn),在大批、大量生產(chǎn)中得到廣泛應(yīng)用,并可用以組成自動(dòng)生產(chǎn)線。由于組合機(jī)床及其自動(dòng)線是一種技術(shù)綜合性很高的高技術(shù)專用產(chǎn)品,是根據(jù)用戶特殊要求而設(shè)計(jì)的,它涉及到加工工藝、刀具、測(cè)量、控制、診斷監(jiān)控、清洗、裝配和試漏等技術(shù)。我國(guó)組合機(jī)床及其組合機(jī)床自動(dòng)線總體技術(shù)水平比發(fā)達(dá)國(guó)家相對(duì)落后,國(guó)內(nèi)所需的一些高水平組合機(jī)床及自動(dòng)線幾乎都從國(guó)外進(jìn)口。工藝裝備的大量進(jìn)口勢(shì)必導(dǎo)致投資規(guī)模的擴(kuò)大,并使產(chǎn)品生產(chǎn)成本提高。因此,市場(chǎng)要求我們不斷開發(fā)新技術(shù)、新工藝、研制新產(chǎn)品,由過去的“剛性”機(jī)床結(jié)構(gòu),向“柔性”化方向發(fā)展,滿足用戶需要,真正成為剛?cè)峒鎮(zhèn)涞淖詣?dòng)化裝備。
組合機(jī)床一般用于加工箱體類或特殊形狀的零件。加工時(shí),工件一般不旋轉(zhuǎn),由刀具的旋轉(zhuǎn)運(yùn)動(dòng)和刀具與工件的相對(duì)進(jìn)給運(yùn)動(dòng),來實(shí)現(xiàn)鉆孔、擴(kuò)孔、锪孔、鉸孔、鏜孔、銑削平面、切削內(nèi)外螺紋以及加工外圓和端面等。有的組合機(jī)床采用車削頭夾持工件使之旋轉(zhuǎn),由刀具作進(jìn)給運(yùn)動(dòng),也可實(shí)現(xiàn)某些回轉(zhuǎn)體類零件(如飛輪、汽車后橋半軸等)的外圓和端面加工。
二十世紀(jì)70年代以來,隨著可轉(zhuǎn)位刀具、密齒銑刀、鏜孔尺寸自動(dòng)檢測(cè)和刀具自動(dòng)補(bǔ)償技術(shù)的發(fā)展,組合機(jī)床的加工精度也有所提高。銑削平面的平面度可達(dá)0.05毫米/1000毫米,表面粗糙度可低達(dá)2.5~0.63微米;鏜孔精度可達(dá)IT7~6級(jí),孔距精度可達(dá)O.03~O.02微米。專用機(jī)床是隨著汽車工業(yè)的興起而發(fā)展起來的。在專用機(jī)床中某些部件因重復(fù)使用,逐步發(fā)展成為通用部件,因而產(chǎn)生了組合機(jī)床。最早的組合機(jī)床是1911年在美國(guó)制成的,用于加工汽車零件。初期,各機(jī)床制造廠都有各自的通用部件標(biāo)準(zhǔn)。為了提高不同制造廠的通用部件的互換性,便于用戶使用和維修,1953年美國(guó)福特汽車公司和通用汽車公司與美國(guó)機(jī)床制造廠協(xié)商,確定了組合機(jī)床通用部件標(biāo)準(zhǔn)化的原則,即嚴(yán)格規(guī)定各部件間的聯(lián)系尺寸,但對(duì)部件結(jié)構(gòu)未作規(guī)定。
組合機(jī)床常用的通用部件有床身(側(cè)底座)、底座(包括中間底座和立柱底座)、立柱、動(dòng)力箱、動(dòng)力滑臺(tái)、各種工藝切削頭等。對(duì)于一些按順序加工的多工位組合機(jī)床還具有移動(dòng)工作臺(tái)或回轉(zhuǎn)工作臺(tái)。
動(dòng)力箱、各種工藝切削頭和動(dòng)力滑臺(tái)是組合機(jī)床完成切削主運(yùn)動(dòng)或進(jìn)給運(yùn)動(dòng)的動(dòng)力部件。其中還有能同時(shí)完成切削主運(yùn)動(dòng)和進(jìn)給運(yùn)動(dòng)的動(dòng)力頭。而只能完成進(jìn)給運(yùn)動(dòng)的動(dòng)力部件稱為動(dòng)力滑臺(tái)。固定在動(dòng)力箱上的主軸箱是用來布置切削主軸并把動(dòng)力箱輸出軸的旋轉(zhuǎn)運(yùn)動(dòng)傳遞給各主鈾的切削刀具,由于各主軸的位置與具體改加工零件有關(guān),因此主軸箱必須根據(jù)被加工零件設(shè)計(jì)不能制造成完全通用的部件,但其中很多零件(例如:主軸、中間軸、齒輪和箱體等)是通用的。
床身、支柱、中間底座等是組合機(jī)床的支承部件,起著機(jī)床的基礎(chǔ)骨架作用。組合機(jī)床的剛度和部件之間的精度保持性,主要是由這些部件保證。運(yùn)動(dòng)的重復(fù)定位精度直接影響組合機(jī)床的加工精度。
除了上述主要部件之外組合機(jī)床還有各種控制部件。主要是指揮機(jī)床按順序動(dòng)作以保證機(jī)床按規(guī)定的程序進(jìn)行工作。
組合機(jī)床的通用部件絕大多數(shù)已由機(jī)械工業(yè)部頒布成國(guó)家標(biāo)準(zhǔn),并按標(biāo)準(zhǔn)所規(guī)定的名義尺寸、主參數(shù)、互換尺寸等定型,各種通用部件之間有配套關(guān)系。組合機(jī)床未來的發(fā)展將更多的采用調(diào)速電動(dòng)機(jī)和滾珠絲杠等傳動(dòng),以簡(jiǎn)化結(jié)構(gòu)、縮短生產(chǎn)節(jié)拍;采用數(shù)字控制系統(tǒng)和主軸箱、夾具自動(dòng)更換系統(tǒng),以提高工藝可調(diào)性;以及納入柔性制造系統(tǒng)等。
組合機(jī)床的主運(yùn)動(dòng)由動(dòng)力頭實(shí)現(xiàn),進(jìn)給運(yùn)動(dòng)由動(dòng)力滑臺(tái)的運(yùn)動(dòng)實(shí)現(xiàn),動(dòng)力滑臺(tái)與動(dòng)力頭配套使用,可以對(duì)工件完成鉆孔、擴(kuò)孔、鉸孔、撞孔、銑平面、拉平面或圓弧、攻絲等孔和平面的多種機(jī)械加工工序。動(dòng)力滑臺(tái)按驅(qū)動(dòng)方式不同分為液壓滑臺(tái)和機(jī)械滑臺(tái)兩種形式。液壓動(dòng)力滑臺(tái)是利用液壓缸將泵站所提供的液壓能轉(zhuǎn)變成滑臺(tái)運(yùn)動(dòng)所需要的機(jī)械能。它對(duì)液壓系統(tǒng)的主要要求是速度換接平穩(wěn),進(jìn)給速度穩(wěn)定,功率利用合理,效率高,發(fā)熱少,自動(dòng)化程度高。
液壓由于其傳動(dòng)力量大,易于傳遞及配置,在工業(yè)、民用行業(yè)應(yīng)用廣泛。在各部件制造中,對(duì)密封性、耐久性有很高的技術(shù)要求,目前在液壓部件制造中已廣泛采用——滾壓工藝,很好的解決了圓度、粗糙度的問題。特別是液壓缸制造中廣泛應(yīng)用。液壓工具可以解決液壓制造各種問題。液壓系統(tǒng)的作用為通過改變壓強(qiáng)增大作用力。一個(gè)完整的液壓系統(tǒng)由五個(gè)部分組成,即動(dòng)力元件、執(zhí)行元件、控制元件、輔助元件(附件)和液壓油。一個(gè)液壓系統(tǒng)的好壞取決于系統(tǒng)設(shè)計(jì)的合理性、系統(tǒng)元件性能的的優(yōu)劣,系統(tǒng)的污染防護(hù)和處理,而最后一點(diǎn)尤為重要。近年來我國(guó)國(guó)內(nèi)液壓技術(shù)有很大的提高,不再單純地使用國(guó)外的液壓技術(shù)進(jìn)行加工。
1.2 主要研究?jī)?nèi)容
液壓技術(shù)是現(xiàn)代機(jī)械工程的基本技術(shù)構(gòu)成和現(xiàn)代控制工程的基本技術(shù)要素,應(yīng)用液壓技術(shù)的程度已經(jīng)成為衡量一個(gè)國(guó)家工業(yè)化水平的重要標(biāo)志之一,所以正確、合理的提高設(shè)計(jì)和使用液壓系統(tǒng),具有十分重要的意義。
通過對(duì)臥式鉆孔組合機(jī)床的原有液壓系統(tǒng)的分析和了解,結(jié)合已學(xué)的液壓方面的知識(shí),對(duì)液壓系統(tǒng)的結(jié)構(gòu)、設(shè)計(jì)等方面的知識(shí)有更進(jìn)一步的提高和認(rèn)識(shí)。
研究?jī)?nèi)容分為以下幾個(gè)部分:
1)液壓系統(tǒng)原理圖的設(shè)計(jì);
2)液壓元件的計(jì)算與選擇;
3)裝配圖的設(shè)計(jì)與計(jì)算;
1.3 本章小結(jié)
本章主要介紹了組合機(jī)床簡(jiǎn)介、國(guó)內(nèi)外在該方向的研究現(xiàn)狀等內(nèi)容。對(duì)文章的寫作目的、寫作內(nèi)容進(jìn)行了整體的介紹,明確了研究的主要內(nèi)容。
第2章 液壓系統(tǒng)設(shè)計(jì)
2.1 設(shè)計(jì)引言
液壓傳動(dòng)及控制系統(tǒng)設(shè)計(jì)計(jì)算,包括明確設(shè)計(jì)要求進(jìn)行工況分析、確定液壓系統(tǒng)主要參數(shù)、擬定液壓系統(tǒng)原理圖、計(jì)算和選擇液壓件以及驗(yàn)算液壓系統(tǒng)性能。
2.2 設(shè)計(jì)要求
主要研究臥式鉆孔組合機(jī)床的液壓系統(tǒng),加工對(duì)象為變速箱體孔,加工動(dòng)作循環(huán)為:動(dòng)力滑臺(tái)快速趨進(jìn)工件—>工進(jìn)I—>工進(jìn)II—>加工結(jié)束快退—>原位停止。
液壓系統(tǒng)的原始數(shù)據(jù):
工進(jìn)I時(shí)的軸向阻力為F1=13000N,速度為(80~95)mm/min;工進(jìn)II時(shí)軸向阻力為F2=7500N,速度為(30~45)mm/min;快進(jìn)、快退速度為3.2m/min,加減速時(shí)間為0.2s;滑臺(tái)運(yùn)動(dòng)部件質(zhì)量為500Kg,全行程為305mm(快進(jìn)為200mm,工進(jìn)I為100mm,工進(jìn)II為5mm)?;_(tái)導(dǎo)軌采用平導(dǎo)軌,靜摩擦系數(shù)為0.2,動(dòng)摩擦系數(shù)為0.15,要求工作性能可靠、平穩(wěn),液壓缸效率取值0.95。
2.3 負(fù)載與運(yùn)動(dòng)分析
(一)外負(fù)載 Fg1=Ft1=13000N
Fg2=Ft2=7500N
(二)慣性負(fù)載
機(jī)床工作部件的總質(zhì)量m=500kg,取△t=0.2s
Fm=m△v/△t=500×3.2/(60×0.2)=133.33N
(三)阻力負(fù)載
機(jī)床工作部件對(duì)動(dòng)力滑臺(tái)導(dǎo)軌的法向力為:
Fn=mg=500×9.8=4900N
靜摩擦阻力 Ffs=fsFn=0.2×4900=980N
Ffd=fdFn=0.15×4900=735N
由此得出液壓缸在各工作階段的負(fù)載如表1所示。
表2-1液壓缸在各工作階段負(fù)載F (單位:N)
工況
負(fù)載組成
負(fù)載值F
工況
負(fù)載組成
負(fù)載值F
啟動(dòng)
F=
980
工進(jìn)1
F=+1
13735
加速
F=+mΔv/Δt
868.33
工進(jìn)2
F=+2
8235
快進(jìn)
F=
735
快退
F=
735
按上表數(shù)值繪制負(fù)載圖如圖1a所示。
由于v1=v4=3.2m/min、l1=200mm、l2=100mm、l3=5mm、快退行程l4=l1+l2+l3=305mm,工進(jìn)速度v2=80~95mm/min,工進(jìn)速度v3=30~45mm/min,其中v1為快進(jìn)速度,v4為快退速度,l1為快進(jìn)行程,l2為工進(jìn)I行程,l3為工進(jìn)II行程,由此可繪出速度如圖1b所示。
a)負(fù)載圖
v/m/min
b)速度圖
圖2-1 組合機(jī)床液壓缸負(fù)載圖和速度圖
2.4 確定執(zhí)行元件主要參數(shù)
1)根據(jù)液壓傳動(dòng)課程設(shè)計(jì)中的表2-2 按負(fù)載選擇工作壓力,組合機(jī)床在最大負(fù)載約為15000N時(shí)液壓系統(tǒng)宜取壓力p1=3MPa。
表2-2 按負(fù)載選擇工作壓力
負(fù)載/ KN
<5
5~10
10~20
20~30
30~50
>50
工作壓力/MPa
<0.8~1
1.5~2
2.5~3
3~4
4~5
≥5
鑒于動(dòng)力滑臺(tái)的要求,這里的液壓缸可選用單活塞桿式的,并在快進(jìn)時(shí)作差動(dòng)連接。這種情況下液壓缸無桿腔的工作面積A1應(yīng)為有桿腔工作面積A2的兩倍,即φ=A1/A2=2,而活塞桿直徑d與缸筒直徑D成d=0.707D的關(guān)系。
在加工時(shí),液壓缸回油路上必須具有背壓p2,以防止孔鉆通時(shí)滑臺(tái)突然前沖。取p2=0.8MPa??爝M(jìn)時(shí)液壓缸作差動(dòng)連接,管路中有壓力損失,有桿腔的壓力應(yīng)略大于無桿腔,但其差值較小,可先按0.3MPa考慮??焱藭r(shí)回油腔中是有背壓的,這時(shí)p2也可按0.8MPa估算。
表2-3 執(zhí)行元件背壓力
系統(tǒng)類型
背壓力/MPa
簡(jiǎn)單系統(tǒng)或輕載節(jié)流調(diào)速系統(tǒng)
0.2~0.5
回油路帶調(diào)速閥的系統(tǒng)
0.4~0.6
回油路設(shè)置有背壓閥的系統(tǒng)
0.5~1.5
用補(bǔ)油泵的閉式回路
0.8~1.5
回油路較復(fù)雜的工程機(jī)械
1.2~3
回油路較短且直接回油
可忽略不計(jì)
由工進(jìn)時(shí)的負(fù)載值,按公式計(jì)算液壓缸面積:
A2= =13735/[0.95(3×2-0.8)×106]m2=27.51×10-4m2
A1=φA2=2A2=55.03×10-4m2
D= =0.084m
d=0.707D=0.06m
將這些直徑按GB/T2348-2001圓整成就近標(biāo)準(zhǔn)值得:
D=0.09m、d=0.07m
由此求得液壓缸兩腔的實(shí)際有效面積為A1=πD2/4=63.59×10-4m2,A2=π(D2-d2)/4=25.13×10-4m2。經(jīng)驗(yàn)算,活塞桿的強(qiáng)度和穩(wěn)定性均符合要求。
根據(jù)上述D和d的值,可估算出液壓缸在各個(gè)工作階段中的壓力、流量和功率,如表4所示。
表2-4 液壓缸在不同工作階段的壓力、流量和功率值
工況
推力
F0/N
回油腔壓力
p2/MPa
進(jìn)油腔壓力
p1/MPa
輸入流量
q×10-3/m3/s
輸入功率
P/KW
計(jì)算公式
快進(jìn)
啟動(dòng)
980
—
0.22
—
—
加速
868.33
p1+Δp
0.39
—
—
恒速
735
p1+Δp
0.47
0.35
0.23
工進(jìn)1
工進(jìn)2
13735
8235
0.25
0.16
1.61
0.96
0.33×10-2
0.21×10-2
0.014
0.008
快退
啟動(dòng)
980
—
0.25
—
—
加速
868.33
0.28
0.82
—
—
恒速
735
0.36
0.93
0.32
0.42
注:1. Δp為液壓缸差動(dòng)連接時(shí),回油口到進(jìn)油口之間的壓力損失,取Δp=0.5MPa。
2. 快退時(shí),液壓缸有桿腔進(jìn)油,壓力為p1,無桿腔回油,壓力為p2。
2.5 設(shè)計(jì)液壓系統(tǒng)方案和擬定液壓系統(tǒng)原理圖
2.5.1 設(shè)計(jì)液壓系統(tǒng)方案
由于該機(jī)床是固定式機(jī)械,且不存在外負(fù)載對(duì)系統(tǒng)作功的工況,這臺(tái)機(jī)床液壓系統(tǒng)的功率小,滑臺(tái)運(yùn)動(dòng)速度低,工作負(fù)載變化小。該液壓系統(tǒng)以采用節(jié)流調(diào)速方式和開式循環(huán)為宜。現(xiàn)采用進(jìn)油路節(jié)流調(diào)速回路,為解決孔鉆通時(shí)滑臺(tái)突然前沖的問題,回油路上要設(shè)置背壓閥。
快進(jìn)加快退所需的時(shí)間t1和工進(jìn)所需的時(shí)間t2分別為 :
=(60*200/3.2*1000+60*305/3.2*1000)s=9.47s
=(60*100/1000*0.09+60*5/1000*0.04)=74.2s
亦即是/≈8.0。因此從提高系統(tǒng)效率,節(jié)省能量的角度來看,采用單個(gè)定量液壓泵作為油源顯然是不適合的,而宜采用大,小兩個(gè)液壓泵自動(dòng)兩級(jí)并聯(lián)供油的油源方案(圖2-2a).
圖2a)
圖2b)
圖2c)
a)液壓源 b)換向回路 c)速度換接回路
圖2-2 油源及液壓回路的選擇
2.5.2 選擇基本回路
由于不存在負(fù)載對(duì)系統(tǒng)作功的工況,也不存在負(fù)載制動(dòng)過程,故不需要設(shè)置平衡制動(dòng)回路。但必須具有快速運(yùn)動(dòng),換向、速度換接以及調(diào)壓,卸荷等回路。
1. 選擇快速運(yùn)動(dòng)和換向回路
中小型組合機(jī)床的液壓系統(tǒng)中,進(jìn)給速度的控制一般采用節(jié)流閥或調(diào)速閥。根據(jù)組合機(jī)床工作時(shí)對(duì)低速性能和速度負(fù)載特性都有一定的要求,決定采用限壓式變量泵和調(diào)速閥組成的容積節(jié)流調(diào)速。容積節(jié)流調(diào)速回路采用壓力補(bǔ)償型變量泵供油,用流量控制閥調(diào)節(jié)進(jìn)入或流出液壓缸的流量來調(diào)節(jié)其運(yùn)動(dòng)速度,并使變量泵的輸油量自動(dòng)地與液壓缸所需流量相適應(yīng)。這種調(diào)速回路沒有溢流損失、效率較高、發(fā)熱小和速度剛性好的特點(diǎn),并且調(diào)速閥裝在回油路上,具有承受負(fù)切削力的能力。系統(tǒng)中采用節(jié)流調(diào)速回路后,不論采用何種油源形式都必須有單獨(dú)的油路直接通向液壓缸兩腔,以實(shí)現(xiàn)快速運(yùn)動(dòng)。在本系統(tǒng)中,快進(jìn),快退換向回路應(yīng)采用圖(2-2b)所示的形式。
2. 選擇速度換接回路
當(dāng)滑臺(tái)快進(jìn)轉(zhuǎn)為工進(jìn)時(shí),輸入液壓缸的流量由11.21L/min降至0.3L/min,滑臺(tái)的速度變化較大,可選用行程閥來控制速度的換接,以減小液壓沖擊(見圖2-2c)。當(dāng)滑臺(tái)由工進(jìn)轉(zhuǎn)為快退時(shí),回路中通過的流量很大-------進(jìn)油路中通過13.02L/min,回油路中通過13.02*(78.54/40.06)L/min=26.492L/min。為了保證換向平穩(wěn)起見,宜采用換向時(shí)間可調(diào)的點(diǎn)也換向閥式換接回路(見圖2-2b)。由于這一回路還要實(shí)現(xiàn)液壓缸的差動(dòng)連接,所以換向閥必須是五通的。
3. 選擇調(diào)壓和卸荷回路
油源中有溢流閥(見圖2-2a),調(diào)定系統(tǒng)工作壓力,因此調(diào)壓?jiǎn)栴}已在油源中解決,無需另外再設(shè)置調(diào)壓回路。而且,系統(tǒng)采用進(jìn)油節(jié)流調(diào)速,故溢流閥常開,即時(shí)滑臺(tái)卡主,系統(tǒng)壓力也不會(huì)超過溢流閥的調(diào)定值,所以又起安全作用。
在圖2-2a中所示的雙液壓泵自動(dòng)兩級(jí)供油的油源中設(shè)有卸荷閥,當(dāng)滑臺(tái)工進(jìn)和停止時(shí),低壓,大流量液壓泵都可經(jīng)此閥卸荷。由于工進(jìn)在整個(gè)工作循環(huán)周期中占了絕大部分時(shí)間,且高壓,小流量液壓泵的功率較小,故可以認(rèn)為卸荷問題已基本解決,就不需要再設(shè)置卸荷回路。
2.5.3 將液壓回路綜合成液壓系統(tǒng)
把上面現(xiàn)出的各種液壓回路組合畫在一起,就可以得到一張液壓系統(tǒng)原理圖(不包括點(diǎn)畫線圓框內(nèi)的元件)。將此圖自習(xí)檢查一遍,可以發(fā)現(xiàn),該圖所示系統(tǒng)的工作中還存在問題。為了防止干擾,簡(jiǎn)化系統(tǒng)并使其功能更加完善,必須對(duì)系統(tǒng)進(jìn)行如下修正:
1) 為了解決防滑臺(tái)工進(jìn)時(shí)圖中進(jìn),回油路相互接通,系統(tǒng)無法建立壓力的問題,必須在換回回路中串接一個(gè)單向閥,將進(jìn),回油路隔斷。
2) 為了解決滑臺(tái)快進(jìn)時(shí)回油路接通郵箱,無法實(shí)現(xiàn)液壓缸差動(dòng)連接的問題,必須在回油路上串接一個(gè)液控順序閥。這樣,滑臺(tái)快進(jìn)時(shí)因負(fù)載較小而系統(tǒng)壓力較低,使閥關(guān)閉,便組織了油液返回油箱。
3) 為了解決機(jī)床停止工作后回路中的油液流向油箱,導(dǎo)致空氣進(jìn)入系統(tǒng),影響回臺(tái)運(yùn)動(dòng)平穩(wěn)性的問題,必須在電液換向閥的回油口增設(shè)一個(gè)單向閥。
4) 為了在滑臺(tái)工進(jìn)后系統(tǒng)能自動(dòng)發(fā)出快退信號(hào),須在調(diào)速閥輸出端增設(shè)一個(gè)壓力繼電器。
5) 若將順序閥和背壓閥的位置對(duì)調(diào)一下,就可以將順序閥與油源處的卸荷閥合并,從而省去一個(gè)閥。
經(jīng)過修改,整理后的液壓系統(tǒng)原理如圖3所示。
14
13
12
11
10
9
8
7
6
5
4
3
2
1
1- 雙葉片液壓泵 2-三位五通電液閥 3-行程閥4-調(diào)速閥 5-單向閥
6-單向閥7-順序閥 8-背壓閥9-溢流閥 10-單向閥 11-過濾器
12-壓力表節(jié)接點(diǎn) 13-單向閥 14-壓力繼電器
圖2-3 整理后的液壓系統(tǒng)原理框圖
2.6 計(jì)算和選擇液壓元件
2.6.1 液壓泵
液壓缸在整個(gè)工作循環(huán)中的最大工作壓力為3.25MPa,如取進(jìn)油路上的壓力損失為0.8MPa,為使壓力繼電器能可靠地工作,取其調(diào)整壓力高出系統(tǒng)最大工作壓力0.5MPa,則小流量液壓泵的最大工作壓力應(yīng)為Pp1=(3.25+0.8+0.5)MPa=4.55Mpa。
大流量液壓泵在快進(jìn),快速運(yùn)動(dòng)時(shí)才向液壓缸輸油,快退時(shí)液壓缸的工作壓力比快進(jìn)時(shí)大,如取進(jìn)油路上的壓力損失為0.5MPa(因?yàn)榇藭r(shí)進(jìn)油不經(jīng)調(diào)速閥故壓力損失減?。?,則大流量液壓泵的最高工作壓力為Pp2=(1.7+0.5)=MPa=2.2Mpa。
兩個(gè)液壓泵應(yīng)向液壓缸提供的最大流量為25.66L/min,因系統(tǒng)較簡(jiǎn)單,取泄露指數(shù)=1.05,則2個(gè)液壓泵的實(shí)際流量為:
=1.05*13.47L/min=14.1435L/min。
由于溢流閥的最小穩(wěn)定溢流量為3L/min,而工進(jìn)時(shí)輸入液壓缸的流量為0.26L/min,由小流量液壓泵單獨(dú)供油,所以小液壓泵的流量規(guī)格最少應(yīng)為3.2L/min。
根據(jù)以上壓力和流量的數(shù)值查閱產(chǎn)品樣本,最后確定選取PV2R12-6/26型雙聯(lián)葉片液壓泵,其小液壓泵和大液壓泵的排量分別為6mL/r和26mL/r,當(dāng)液壓泵的轉(zhuǎn)速=940r/min時(shí)該液壓泵的理論流量為31.96L/min,若取液壓泵的容積效率=0.9,則液壓泵的實(shí)際輸出流量為:
=[(6+26)*940*0.9/1000]L/min=27.1L/min。
由于液壓缸在快退時(shí)輸入功率最大,這時(shí)液壓泵工作壓力位2.2MPa,流量為27.1L/min。取液壓泵的總效率ηp=0.75,則液壓泵驅(qū)動(dòng)電動(dòng)機(jī)所需的功率為:P= =2.2*27.1/60*0.75=1.2KW
根據(jù)此數(shù)值查閱電動(dòng)機(jī)產(chǎn)品樣本選取Y100L—6型電動(dòng)機(jī),其額定功率Pn=1.5KW,額定轉(zhuǎn)速Nn=940r/min。
2.6.2 閥類元件及輔助元件
根據(jù)閥類及輔助元件所在油路的最大工作壓力和通過該元件的最大實(shí)際流量,可選出這些液壓元件的型號(hào)及規(guī)格見表5。表中序號(hào)與圖3的元件標(biāo)號(hào)相同。
表2-5 元件的型號(hào)及規(guī)格
2.6.3 油管
各元件間連接管道的規(guī)格按液壓元件接口處的尺寸決定,液壓缸進(jìn),出油管則按輸入,排出的最大流量計(jì)算。由于液壓泵選定之后液壓缸在各個(gè)工作階段的進(jìn),出流量已與原定數(shù)值不同,所以重新計(jì)算如表6所示。
由上表可以看出,液壓缸在各個(gè)工作階段的實(shí)際運(yùn)動(dòng)速度符合設(shè)計(jì)要求。根據(jù)表6中數(shù)值,按表7取油液在壓油管的流速V=3m/s,液壓缸無桿腔及有桿腔相連的油管內(nèi)徑分別為:
d=2*=2* mm =19.71mm;
d=2* mm =13.85mm
這兩根油管都按GB/T2351——2005選用內(nèi)徑φ15mm,外徑φ18mm的冷拔無縫鋼管。
表2-6 液壓缸的進(jìn)出流量
快 進(jìn)
工 進(jìn)(總)
快 退
輸入流量/L?
=()/(-)
=50.21
=0.265
==25.6
輸出流量/L?
=()/
=25.6
=()/
=0.13
=()/
=50.20
運(yùn)動(dòng)速度/L?
=/(-)
=5.59
=/
=0.025
=/
=5.96
表2-7 允許流速推薦值
管道
推薦流速/(m/s)
吸油管道
0. 5~1.5,一般取1以下
壓油管道
3~6,壓力高,管道短,粘度小取大值
回油管道
1. 5~3
2.6.4 油箱
油箱容積估算,取經(jīng)驗(yàn)數(shù)據(jù)ζ=7,故其容積為:
V=ζ=7*25.6L=179.2L
按照GB/T7938——1999規(guī)定,取最靠近的標(biāo)準(zhǔn)值V=200L。
2.7 本章小結(jié)
1.系統(tǒng)采用了“雙聯(lián)液壓泵-調(diào)速閥-被壓閥”式調(diào)速回路。它保證液壓缸穩(wěn)定的低速運(yùn)動(dòng),較好的速度剛性和較大的調(diào)速范圍?;赜吐飞霞颖粔洪y防止空氣進(jìn)入系統(tǒng),并能使滑臺(tái)承受負(fù)向負(fù)載。
2.系統(tǒng)采用了雙葉片液壓泵和液壓缸差動(dòng)鏈接兩項(xiàng)措施來實(shí)現(xiàn)塊進(jìn),可得到較大的快進(jìn)速度,且能量利用也比較合理?;_(tái)停止運(yùn)動(dòng)時(shí),采用了單向閥,被壓閥,溢流閥等來使液壓泵在低壓時(shí)卸荷,既減少能量損失,又控制油路保持一定的壓力,以保證下一工作循環(huán)的順利啟動(dòng)。
3.系統(tǒng)采用了行程閥和順序閥等實(shí)現(xiàn)快進(jìn)與工進(jìn)的換接,不僅簡(jiǎn)化了油路和電路,而且使動(dòng)作可靠,轉(zhuǎn)換的位置精度也比較高,由于速度比較低,采用了閥體切換和調(diào)速閥串聯(lián)回路,既保證了必要的轉(zhuǎn)換精度,又使油路的布局比較簡(jiǎn)單,靈活。定位準(zhǔn)確,重復(fù)精度高。
4.采用了電液閥來切換主油路,使滑臺(tái)的換向更加平穩(wěn),沖擊和噪聲小。同時(shí),電液換向閥的五通結(jié)構(gòu)使滑臺(tái)進(jìn)和退時(shí)分別從兩條油路回油,這樣滑臺(tái)快退時(shí),系統(tǒng)沒有被壓,也減少了壓力損失。
總之,這個(gè)液壓系統(tǒng)設(shè)計(jì)比較合理,它使用的元件不多,但卻能完成較為復(fù)雜的半自動(dòng)工作循環(huán),且性能良好。
第3章 驗(yàn)算液壓系統(tǒng)性能
3.1 驗(yàn)算系統(tǒng)壓力損失
由于系統(tǒng)管路布置尚未確定,所以只能估算系統(tǒng)壓力損失。估算時(shí),首先確定管道內(nèi)液體的流動(dòng)狀態(tài),然后計(jì)算各種工況下總的壓力損失?,F(xiàn)取進(jìn)、回油管道長(zhǎng)為l=2m,油液的運(yùn)動(dòng)粘度取=1′10-4m2/s,油液的密度取r=0.9174′103kg/m3。
(1) 判斷流動(dòng)狀態(tài)
在快進(jìn)、工進(jìn)和快退三種工況下,進(jìn)、回油管路中所通過的流量以快退時(shí)回油流量q2=60L/min為最大,此時(shí),油液流動(dòng)的雷諾數(shù)
639
10
1
10
20
60
10
60
4
4
4
3
3
e
=
′
′
′
′
′
′
′
=
=
=
-
-
-
p
n
p
n
u
d
q
d
R
也為最大。因?yàn)樽畲蟮睦字Z數(shù)小于臨界雷諾數(shù)(2000),故可推出:各工況下的進(jìn)、回油路中的油液的流動(dòng)狀態(tài)全為層流。
(2) 計(jì)算系統(tǒng)壓力損失
將層流流動(dòng)狀態(tài)沿程阻力系數(shù)
和油液在管道內(nèi)流速
同時(shí)代入沿程壓力損失計(jì)算公式,并將已知數(shù)據(jù)代入后,得
可見,沿程壓力損失的大小與流量成正比,這是由層流流動(dòng)所決定的。
在管道結(jié)構(gòu)尚未確定的情況下,管道的局部壓力損失?pζ常按下式作經(jīng)驗(yàn)計(jì)算
各工況下的閥類元件的局部壓力損失可根據(jù)下式計(jì)算
其中的Dpn由產(chǎn)品樣本查出?;_(tái)在快進(jìn)、工進(jìn)和快退工況下的壓力損失計(jì)算如下:
1.快進(jìn)
滑臺(tái)快進(jìn)時(shí),液壓缸通過電液換向閥差動(dòng)連接。在進(jìn)油路上,油液通過單向閥10、電液換向閥2,然后與液壓缸有桿腔的回油匯合通過行程閥3進(jìn)入無桿腔。在進(jìn)油路上,壓力損失分別為
在回油路上,壓力損失分別為
將回油路上的壓力損失折算到進(jìn)油路上去,便得出差動(dòng)快速運(yùn)動(dòng)時(shí)的總的壓力損失
2.工進(jìn)
滑臺(tái)工進(jìn)時(shí),在進(jìn)油路上,油液通過電液換向閥2、調(diào)速閥4進(jìn)入液壓缸無桿腔,在調(diào)速閥4處的壓力損失為0.5MPa。在回油路上,油液通過電液換向閥2、背壓閥8和大流量泵的卸荷油液一起經(jīng)液控順序閥7返回油箱,在背壓閥8處的壓力損失為0.6MPa。若忽略管路的沿程壓力損失和局部壓力損失,則在進(jìn)油路上總的壓力損失為
此值略小于估計(jì)值。
在回油路上總的壓力損失為
該值即為液壓缸的回油腔壓力p2=0.66MPa,可見此值與初算時(shí)選取的背壓值基本相符。
重新計(jì)算液壓缸的工作壓力為
考慮到壓力繼電器的可靠動(dòng)作要求壓差Dpe=0.5MPa,則小流量泵的工作壓力為
此值與估算值基本相符,是調(diào)整溢流閥10的調(diào)整壓力的主要參考數(shù)據(jù)。
3.快退
滑臺(tái)快退時(shí),在進(jìn)油路上,油液通過單向閥10、電液換向閥2進(jìn)入液壓缸有桿腔。在回油路上,油液通過單向閥5、電液換向閥2和單向閥13返回油箱。在進(jìn)油路上總的壓力損失為
此值遠(yuǎn)小于估計(jì)值,因此液壓泵的驅(qū)動(dòng)電動(dòng)機(jī)的功率是足夠的。
在回油路上總的壓力損失為
大流量泵的工作壓力為
此值是調(diào)整液控順序閥7的調(diào)整壓力的主要參考數(shù)據(jù)。
3.2 驗(yàn)算系統(tǒng)發(fā)熱與溫升
由于工進(jìn)在整個(gè)工作循環(huán)中占96%,所以系統(tǒng)的發(fā)熱與溫升可按工進(jìn)工況來計(jì)算。在工進(jìn)時(shí),大流量泵經(jīng)液控順序閥7卸荷,其出口壓力即為油液通過液控順序閥的壓力損失
MPa
0514
.
0
MPa
63
1
.
26
3
.
0
2
2
n
n
2
p
=
÷
?
?
?
è
?
′
=
÷
÷
?
?
?
?
è
?
D
=
D
=
q
q
p
p
p
液壓系統(tǒng)的總輸入功率即為液壓泵的輸入功率
Pr =506.4 W
液壓系統(tǒng)輸出的有效功率即為液壓缸輸出的有效功率
由此可計(jì)算出系統(tǒng)的發(fā)熱功率為
(
)
W
7
.
478
7
.
27
4
.
506
c
r
=
-
=
-
=
P
P
H
按式計(jì)算工進(jìn)時(shí)系統(tǒng)中的油液溫升,即
△T = 14°C
其中傳熱系數(shù)K=15 W/(m2·°C)。
設(shè)環(huán)境溫T2=25°C,則熱平衡溫度為
T1 = T2 + △T ≤55 °C
油溫在允許范圍內(nèi),油箱散熱面積符合要求,不必設(shè)置冷卻器。
結(jié) 論
制造業(yè)是一個(gè)國(guó)家或地區(qū)經(jīng)濟(jì)發(fā)展的重要支柱,其發(fā)展水平標(biāo)志著該國(guó)家或地區(qū)的經(jīng)濟(jì)實(shí)力、科技水平、生活水準(zhǔn)和國(guó)防實(shí)力。而制造業(yè)的生產(chǎn)能力主要取決于制造裝備——機(jī)床的先進(jìn)程度。
本課題開發(fā)研制的臥式鉆孔組合機(jī)床的液壓系統(tǒng),用于加工變速箱體孔。在開發(fā)過程中,針對(duì)加工過程中存在的難點(diǎn)進(jìn)行了攻關(guān)。在鉆床的設(shè)計(jì)上采取了一系列的措施,保證了被加工孔的加工精度。主要完成了以下工作:
設(shè)計(jì)的臥式鉆孔組合機(jī)床液壓系統(tǒng),保證了加工孔的生產(chǎn)質(zhì)量,提高了加工效率,且該機(jī)床夾具調(diào)整靈活,降低了生產(chǎn)成本,縮短了生產(chǎn)制造周期。
本課題基于使設(shè)計(jì)出的組合機(jī)床液壓系統(tǒng)簡(jiǎn)單、使用方便、效率高、質(zhì)量好提出的要求,合適地確定機(jī)床工序集中程度,合理地選擇組合機(jī)床的通用部件,設(shè)計(jì)的液壓系統(tǒng)原理圖和液壓元件的選擇是本次設(shè)計(jì)的主要內(nèi)容。具體的工作就是通過負(fù)載和運(yùn)動(dòng)分析,得出執(zhí)行元件參數(shù),設(shè)計(jì)出系統(tǒng)原理圖,合理選用液壓元件。
當(dāng)然,本項(xiàng)課題還有許多值得完善的地方,比如設(shè)計(jì)過程中很多公式和數(shù)據(jù)均由查閱資料所得,與生產(chǎn)實(shí)際必然有沖突的地方,但這些問題通過改進(jìn)設(shè)計(jì)、完善工藝、現(xiàn)場(chǎng)的不斷實(shí)踐、總結(jié),必將會(huì)得到進(jìn)步的提高。
致 謝
本課題是在導(dǎo)師親切關(guān)懷和悉心指導(dǎo)下完成的,導(dǎo)師以淵博的學(xué)識(shí)和嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度,為學(xué)生開拓了研究視野,豐富了專業(yè)知識(shí)。先生謙遜無私的高尚品質(zhì)、樸實(shí)真誠(chéng)的做人原則和一絲不茍的敬業(yè)精神,對(duì)學(xué)生將永遠(yuǎn)的鞭策。在我畢業(yè)設(shè)計(jì)期間,老師在學(xué)習(xí)、生活上都給予了我極大的關(guān)懷和鼓勵(lì)。從論文選題到最后論文的撰寫,老師都做了悉心的指導(dǎo),并提出了許多寶貴的建議。藉此完成之際,借此機(jī)會(huì)謹(jǐn)向尊敬的李欣老師致以最衷心的感謝!
感謝論文中參考的參考文獻(xiàn)的作者;對(duì)于提供論文中隱含的上述提及的支持者以及研究思想和設(shè)想的支持者表示感謝。
感謝我的同學(xué)和朋友的支持和幫助!
在求學(xué)期間,我的親屬和朋友對(duì)我給予了無微不至的關(guān)懷,對(duì)此,我也表示深深的感謝!
詳情請(qǐng)看最后一頁
參考文獻(xiàn)
[1].何慶編著.《機(jī)械制造專業(yè)畢業(yè)設(shè)計(jì)指導(dǎo)與范例》. 化學(xué)工業(yè)出版社,2008
[2].大連組合機(jī)床研究所編.《組合機(jī)床設(shè)計(jì)參考圖冊(cè)》.北京:機(jī)械工業(yè)出版社,1975
[3].李家寶編.《夾具設(shè)計(jì)》.機(jī)械工業(yè)出版社,1961
[4].沈陽工業(yè)大學(xué),大連鐵道學(xué)院等編.《組合機(jī)床設(shè)計(jì)》.1985.09
[5].謝家瀛主編.《組合機(jī)床設(shè)計(jì)簡(jiǎn)明手冊(cè)》.機(jī)械工業(yè)出版社, 1994
[6].路永明,武漢民編.《新編機(jī)械設(shè)計(jì)手冊(cè)》.石油大學(xué)出版社,1990
[7].《金屬機(jī)械加工工藝人員手冊(cè)》.上??茖W(xué)技術(shù)出版社,1981
[8].趙如福主編.《機(jī)械加工工藝人員手冊(cè)》.上??萍汲霭嫔?,1990
[9].艾興,肖詩綱編.《切削用量簡(jiǎn)明手冊(cè)》.機(jī)械工業(yè)出版社, 1985
[10].大連組合機(jī)床研究所編.《組合機(jī)床設(shè)計(jì)》.北京機(jī)械工業(yè)出版社,1975
[11].金鈴,劉玉光等編著.《畫法幾何及機(jī)械制圖》.黑龍江人民出版社, 2003
[12].唐宗軍主編.《機(jī)械制造基礎(chǔ)》.機(jī)械工業(yè)出版社,2008
[13].東北重型機(jī)械學(xué)院等編.《機(jī)床夾具設(shè)計(jì)手冊(cè)》.上海:上??萍汲霭嫔纾?988
[14].王世清主編.《深孔加工技術(shù)》.2003.10
[15].王峻.《20世紀(jì)深孔加工技術(shù)的興衰及新突破》.《機(jī)械管理開發(fā)》.總第79期.2004.08
[16].吳昊川.《深孔加工關(guān)鍵技術(shù)在實(shí)際生產(chǎn)中的研究與應(yīng)用》.2010年第20卷第4期
[17].李益民.《機(jī)械制造工藝設(shè)計(jì)簡(jiǎn)明手冊(cè)》[M].北京:機(jī)械工業(yè)出版社,1998
[18].王積偉.《液壓傳動(dòng)》(第二版).機(jī)械工業(yè)出版社,2007-4-1
[19].E.G.Hoffman.JIGS AND FIXTURE DESIGN[M].London,1990
[20].L.Zhu.The reseach of the deep-hole strong honing titanium alloy. Key
Engineering Materials .2001
[21].John J. Craig. Introduction to Robotics: Mechanics and Control, 2rd ed.,
Wesley Publishing Company, 1988.
[22].Lee C S G,Ziegler M.A Geometric Approach in Solving the Inverse
Kinematics of PUMP Robots[C].In:IEEE Trans.Aerospace and Electronic
Systems,1984.ASE-20(6):695-706
附錄-中英文翻譯
外文翻譯
英文原文
MACHINABILITY
The machinability of a material usually defined in terms of four factors:
1、 Surface finish and integrity of the machined part;
2、 Tool life obtained;
3、 Force and power requirements;
4、 Chip control.
Thus, good machinability good surface finish and integrity, long tool life, and low force And power requirements. As for chip control, long and thin (stringy) cured chips, if not broken up, can severely interfere with the cutting operation by becoming entangled in the cutting zone.
Because of the complex nature of cutting operations, it is difficult to establish relationships that quantitatively define the machinability of a material. In manufacturing plants, tool life and surface roughness are generally considered to be the most important factors in machinability. Although not used much any more, approximate machinability ratings are available in the example below.
1 Machinability Of Steels
Because steels are among the most important engineering materials (as noted in Chapter 5), their machinability has been studied extensively. The machinability of steels has been mainly improved by adding lead and sulfur to obtain so-called free-machining steels.
Resulfurized and Rephosphorized steels. Sulfur in steels forms manganese sulfide inclusions (second-phase particles), which act as stress raisers in the primary shear zone. As a result, the chips produced break up easily and are small; this improves machinability. The size, shape, distribution, and concentration of these inclusions significantly influence machinability. Elements such as tellurium and selenium, which are both chemically similar to sulfur, act as inclusion modifiers in resulfurized steels.
Phosphorus in steels has two major effects. It strengthens the ferrite, causing increased hardness. Harder steels result in better chip formation and surface finish. Note that soft steels can be difficult to machine, with built-up edge formation and poor surface finish. The second effect is that increased hardness causes the formation of short chips instead of continuous stringy ones, thereby improving machinability.
Leaded Steels. A high percentage of lead in steels solidifies at the tip of manganese sulfide inclusions. In non-resulfurized grades of steel, lead takes the form of dispersed fine particles. Lead is insoluble in iron, copper, and aluminum and their alloys. Because of its low shear strength, therefore, lead acts as a solid lubricant (Section 32.11) and is smeared over the tool-chip interface during cutting. This behavior has been verified by the presence of high concentrations of lead on the tool-side face of chips when machining leaded steels.
When the temperature is sufficiently high-for instance, at high cutting speeds and feeds (Section 20.6)—the lead melts directly in front of the tool, acting as a liquid lubricant. In addition to this effect, lead lowers the shear stress in the primary shear zone, reducing cutting forces and power consumption. Lead can be used in every grade of steel, such as 10xx, 11xx, 12xx, 41xx, etc. Leaded steels are identified by the letter L between the second and third numerals (for example, 10L45). (Note that in stainless steels, similar use of the letter L means “l(fā)ow carbon,” a condition that improves their corrosion resistance.)
However, because lead is a well-known toxin and a pollutant, there are serious environmental concerns about its use in steels (estimated at 4500 tons of lead consumption every year in the production of steels). Consequently, there is a continuing trend toward eliminating the use of lead in steels (lead-free steels). Bismuth and tin are now being investigated as possible substitutes for lead in steels.
Calcium-Deoxidized Steels. An important development is calcium-deoxidized steels, in which oxide flakes of calcium silicates (CaSo) are formed. These flakes, in turn, reduce the strength of the secondary shear zone, decreasing tool-chip interface and wear. Temperature is correspondingly reduced. Consequently, these steels produce less crater wear, especially at high cutting speeds.
Stainless Steels. Austenitic (300 series) steels are generally difficult to machine. Chatter can be s problem, necessitating machine tools with high stiffness. However, ferritic stainless steels (also 300 series) have good machinability. Martensitic (400 series) steels are abrasive, tend to form a built-up edge, and require tool materials with high hot hardness and crater-wear resistance. Precipitation-hardening stainless steels are strong and abrasive, requiring hard and abrasion-resistant tool materials.
The Effects of Other Elements in Steels on Machinability. The presence of aluminum and silicon in steels is always harmful because these elements combine with oxygen to form aluminum oxide and silicates, which are hard and abrasive. These compounds increase tool wear and reduce machinability. It is esse
收藏