《人教版九年級下冊數(shù)學(xué) 28.1 第3課時(shí) 特殊角的三角函數(shù)值 教案》由會員分享,可在線閱讀,更多相關(guān)《人教版九年級下冊數(shù)學(xué) 28.1 第3課時(shí) 特殊角的三角函數(shù)值 教案(3頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、28.1銳角三角函數(shù)
第3課時(shí) 特殊角的三角函數(shù)
1.經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,進(jìn)一步體會三角函數(shù)的意義;(重點(diǎn))
2.能夠進(jìn)行30°、45°、60°角的三角函數(shù)值的計(jì)算;(重點(diǎn))
3.能夠結(jié)合30°、45°、60°的三角函數(shù)值解決簡單實(shí)際問題.(難點(diǎn))
一、情境導(dǎo)入
問題1:一個(gè)直角三角形中,一個(gè)銳角的正弦、余弦、正切值是怎么定義的?
問題2:兩塊三角尺中有幾個(gè)不同的銳角?各是多少度?設(shè)每個(gè)三角尺較短的邊長為1,分別求出這幾個(gè)銳角的正弦值、余弦值和正切值.
二、合作探究
探究點(diǎn)一:特殊角的三角函數(shù)
2、值
【類型一】 利用特殊的三角函數(shù)值進(jìn)行計(jì)算
計(jì)算:
(1)2cos60°·sin30°-sin45°·sin60°;
(2).
解析:將特殊角的三角函數(shù)值代入求解.
解:(1)原式=2××-××=-=-1;
(2)原式==2-3.
方法總結(jié): 解決此類題目的關(guān)鍵是熟記特殊角的三角函數(shù)值.
變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第4題
【類型二】 已知三角函數(shù)值求角的取值范圍
若cosα=,則銳角α的大致范圍是( )
A.0°<α<30° B.30°<α<45°
C.45°<α<60° D.0°<α<30°
解析:∵cos30°=,cos45°
3、=,cos60°=,且<<,∴cos60°<cosα<cos45°,∴銳角α的范圍是45°<α<60°.故選C.
方法總結(jié):解決此類問題要熟記特殊角的三角函數(shù)值和三角函數(shù)的增減性.
【類型三】 根據(jù)三角函數(shù)值求角度
若tan(α+10°)=1,則銳角α的度數(shù)是( )
A.20° B.30° C.40° D.50°
解析:∵tan(α+10°)=1,∴tan(α+10°)=.∵tan30°=,∴α+10°=30°,∴α=20°.故選A.
方法總結(jié):熟記特殊角的三角函數(shù)值是解決問題的關(guān)鍵.
變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第9題
探究點(diǎn)二:特殊角的三
4、角函數(shù)值的應(yīng)用
【類型一】 利用三角形的邊角關(guān)系求線段的長
如圖,在△ABC中,∠ABC=90°,∠A=30°,D是邊AB上一點(diǎn),∠BDC=45°,AD=4,求BC的長.
解析:由題意可知△BCD為等腰直角三角形,則BD=BC,在Rt△ABC中,利用銳角三角函數(shù)的定義求出BC的長即可.
解:∵∠B=90°,∠BDC=45°,∴△BCD為等腰直角三角形,∴BD=BC.在Rt△ABC中,tan∠A=tan30°=,即=,解得BC=2(+1).
方法總結(jié):在直角三角形中求線段的長,如果有特殊角,可考慮利用三角函數(shù)的定義列出式子,求出三角函數(shù)值,進(jìn)而求出答案.
變式訓(xùn)練:見《學(xué)練優(yōu)》
5、本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第2題
【類型二】 判斷三角形的形狀
已知△ABC中的∠A與∠B滿足(1-tanA)2+|sinB-|=0,試判斷△ABC的形狀.
解析:根據(jù)非負(fù)性的性質(zhì)求出tanA及sinB的值,再根據(jù)特殊角的三角函數(shù)值求出∠A及∠B的度數(shù),進(jìn)而可得出結(jié)論.
解:∵(1-tanA)2+|sinB-|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°-45°-60°=75°,∴△ABC是銳角三角形.
方法總結(jié):一個(gè)數(shù)的絕對值和偶次方都是非負(fù)數(shù),當(dāng)幾個(gè)數(shù)或式的絕對值或偶次方相加和為0時(shí),則其中的每一項(xiàng)都必須等于0.
變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)
6、練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第8題
【類型三】 構(gòu)造三角函數(shù)模型解決問題
要求tan30°的值,可構(gòu)造如圖所示的直角三角形進(jìn)行計(jì)算.作Rt△ABC,使∠C=90°,斜邊AB=2,直角邊AC=1,那么BC=,∠ABC=30°,∴tan30°===.在此圖的基礎(chǔ)上,通過添加適當(dāng)?shù)妮o助線,探究tan15°與tan75°的值.
解析:根據(jù)角平分線的性質(zhì)以及勾股定理首先求出CD的長,進(jìn)而得出tan15°=,tan75°=求出即可.
解:作∠B的平分線交AC于點(diǎn)D,作DE⊥AB,垂足為E.∵BD平分∠ABC,CD⊥BC,DE⊥AB,∴CD=DE.設(shè)CD=x,則AD=1-x,AE=2-BE=2-BC=
7、2-.在Rt△ADE中,DE2+AE2=AD2,x2+(2-)2=(1-x)2,解得x=2-3,∴tan15°==2-,tan75°===2+.
方法總結(jié):解決問題的關(guān)鍵是添加輔助線構(gòu)造含有15°和75°的直角三角形,再根據(jù)三角函數(shù)的定義求出15°和75°的三角函數(shù)值.
變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第2題
三、板書設(shè)計(jì)
1.特殊角的三角函數(shù)值:
30°
45°
60°
sinα
cosα
tanα
1
2.應(yīng)用特殊角的三角函數(shù)值解決問題.
課程設(shè)計(jì)中引入非常直接,由三角尺引入,直擊課題,同時(shí)也對前兩節(jié)學(xué)習(xí)的知識進(jìn)行了整體的復(fù)習(xí),效果很好.在講解特殊角的三角函數(shù)值時(shí)講解的也很細(xì),可以說前面部分的教學(xué)很成功,學(xué)生理解的很好.