北師大版七年級(jí)下冊(cè)數(shù)學(xué)《第6章概率初步》全章教案+《平行線(xiàn)的性質(zhì)》教學(xué)設(shè)計(jì)
《北師大版七年級(jí)下冊(cè)數(shù)學(xué)《第6章概率初步》全章教案+《平行線(xiàn)的性質(zhì)》教學(xué)設(shè)計(jì)》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《北師大版七年級(jí)下冊(cè)數(shù)學(xué)《第6章概率初步》全章教案+《平行線(xiàn)的性質(zhì)》教學(xué)設(shè)計(jì)(38頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
北師大版七年級(jí)下冊(cè)數(shù)學(xué)《第6章概率初步》全章教案+《平行線(xiàn)的性質(zhì)》教學(xué)設(shè)計(jì) 第六章 概率初步 教材簡(jiǎn)析 本章的主要內(nèi)容有事件的分類(lèi)及判斷隨機(jī)事件可能性的大?。浑S機(jī)事件發(fā)生頻率的穩(wěn)定性;等可能事件的概率及計(jì)算簡(jiǎn)單事件發(fā)生的概率. 在認(rèn)識(shí)可能性的基礎(chǔ)上,進(jìn)一步理解事件的分類(lèi)和隨機(jī)事件可能性的大小,然后通過(guò)試驗(yàn)感受在實(shí)驗(yàn)次數(shù)很大時(shí),隨機(jī)事件發(fā)生頻率的穩(wěn)定性,進(jìn)而認(rèn)識(shí)等可能事件的概率,體會(huì)概率是描述隨機(jī)現(xiàn)象的數(shù)學(xué)模型.本章內(nèi)容是中考重要考點(diǎn)之一,主要以考查隨機(jī)事件、必然事件與不可能事件等概念的區(qū)分以及簡(jiǎn)單的概率計(jì)算為主,題型以選擇題、填空題為主,難度較?。? 教學(xué)指導(dǎo) 【本章重點(diǎn)】 求等可能事件的概率. 【本章難點(diǎn)】 借助頻率的穩(wěn)定性理解概率,根據(jù)事件發(fā)生的概率解決實(shí)際問(wèn)題. 【本章思想方法】 1.體會(huì)和掌握類(lèi)比的學(xué)習(xí)方法,如通過(guò)類(lèi)比,學(xué)習(xí)和區(qū)分隨機(jī)事件、必然事件與不可能事件. 2.體會(huì)數(shù)形結(jié)合思想,如從圖表中獲取有用信息,從而利用圖表解決實(shí)際問(wèn)題;根據(jù)幾何圖形的面積的大小,確定隨機(jī)事件發(fā)生的概率,并解決有關(guān)實(shí)際問(wèn)題. 3.體會(huì)轉(zhuǎn)化思想,如本章所涉及的有關(guān)幾何概率的計(jì)算題都轉(zhuǎn)化為用公式P(A)=來(lái)解. 課時(shí)計(jì)劃 1 感受可能性 ? ? ? ? ?1課時(shí) 2 頻率的穩(wěn)定性 ? ? ? ?2課時(shí) 3 等可能事件的概率 ? ?4課時(shí)? 1 感受可能性 教學(xué)目標(biāo) 一、基本目標(biāo) 1.理解必然事件、不可能事件、隨機(jī)事件的概念,并能區(qū)分必然事件、不可能事件、隨機(jī)事件. 2.在實(shí)際問(wèn)題中,感受隨機(jī)事件發(fā)生的可能性是有大有小的. 二、重難點(diǎn)目標(biāo) 【教學(xué)重點(diǎn)】 識(shí)別必然事件、不可能事件、隨機(jī)事件. 【教學(xué)難點(diǎn)】 判斷事件發(fā)生可能性的大?。? 教學(xué)過(guò)程 環(huán)節(jié)1 自學(xué)提綱,生成問(wèn)題 【5 min閱讀】 閱讀教材P136~P138的內(nèi)容,完成下面練習(xí). 【3 min反饋】 1.必然事件:一定會(huì)發(fā)生的事件. 2.不可能事件:一定不會(huì)發(fā)生的事件. 3.必然事件和不可能事件統(tǒng)稱(chēng)為確定事件. 4.隨機(jī)事件:無(wú)法事先確定會(huì)不會(huì)發(fā)生的事件. 5.投擲兩枚質(zhì)地均勻的骰子,骰子的六個(gè)面上分別刻有1到6的點(diǎn)數(shù),則下列事件為必然事件的是( A ) A.兩枚骰子向上一面的點(diǎn)數(shù)之和大于2 B.兩枚骰子向上一面的點(diǎn)數(shù)之和等于2 C.兩枚骰子向上一面的點(diǎn)數(shù)之和大于12 D.兩枚骰子向上一面的點(diǎn)數(shù)之和等于12 6.一只不透明的袋子中有1個(gè)紅球、1個(gè)黑球和2個(gè)白球,這些球除顏色不同外其他都相同,攪勻后從中任意摸出1個(gè)球,摸出白球可能性大于摸出紅球可能性.(填“等于”“小于”或“大于”) 環(huán)節(jié)2 合作探究,解決問(wèn)題 活動(dòng)1 小組討論(師生互學(xué)) 【例1】下列問(wèn)題哪些是必然事件?哪些是不可能事件?哪些是隨機(jī)事件? (1)太陽(yáng)從西邊落山; (2)a2+b2=-1(其中a、b都是實(shí)數(shù)); (3)水往低處流; (4)三個(gè)人性別各不相同; (5)經(jīng)過(guò)有信號(hào)燈的十字路口,遇見(jiàn)紅燈. 【互動(dòng)探索】(引發(fā)學(xué)生思考)如何判斷事件是必然事件、不可能事件還是隨機(jī)事件? 【解答】(1)(3)是必然事件;(2)(4)是不可能事件;(5)是隨機(jī)事件. 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))判斷必然事件、不可能事件和隨機(jī)事件最簡(jiǎn)單的方法:判斷這個(gè)句子的正確性.如果這句話(huà)是正確的,那么它就是必然事件;如果這句話(huà)是錯(cuò)誤的,那么它就是不可能事件;其他情況均為隨機(jī)事件. 【例2】一個(gè)不透明的口袋中有7個(gè)紅球、5個(gè)黃球、4個(gè)綠球,這些球除顏色外沒(méi)有其他區(qū)別.現(xiàn)從中任意摸出一球,如果要使摸到綠球的可能性最大,需要在這個(gè)口袋中至少再放入多少個(gè)綠球?請(qǐng)簡(jiǎn)要說(shuō)明理由. 【互動(dòng)探索】(引發(fā)學(xué)生思考)此題中可能性的大小與什么有關(guān)? 【解答】至少再放入4個(gè)綠球.理由:袋中有綠球4個(gè),再至少放入4個(gè)綠球后,袋中有不少于8個(gè)綠球,數(shù)量最多,這樣摸到綠球的可能性最大. 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))對(duì)于此類(lèi)判斷事件發(fā)生可能性大小的問(wèn)題,由生活經(jīng)驗(yàn)可知,在同類(lèi)事物中,一種物品的數(shù)量越多,則摸到或選中的可能性就越大,即可能性的大小主要看這個(gè)事件中出現(xiàn)這個(gè)結(jié)果的機(jī)會(huì)的大?。? 活動(dòng)2 鞏固練習(xí)(學(xué)生獨(dú)學(xué)) 1.下列語(yǔ)句描述的事件中,是隨機(jī)事件的為( D ) A.水能載舟,亦能覆舟?? ?B.只手遮天,偷天換日 C.瓜熟蒂落,水到渠成?? ?D.心想事成,萬(wàn)事如意 2.在利用如圖所示的程序進(jìn)行計(jì)算時(shí),下列事件中,屬于必然事件的是( A ) A.當(dāng)x=2時(shí),y=0 ?? ?B.當(dāng)x=0時(shí),y=4 C.當(dāng)x>0時(shí),y>0 ?? ?D.當(dāng)x>0時(shí),y<0 3.如圖,轉(zhuǎn)動(dòng)如圖所示的一些可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)停止時(shí),猜想指針落在黑色區(qū)域內(nèi)的可能性大小,將轉(zhuǎn)盤(pán)的序號(hào)按可能性從小到大的順序排列為④①②③. 4.在一個(gè)不透明的口袋中裝有大小、外形一模一樣的5個(gè)紅球、3個(gè)藍(lán)球和2個(gè)白球,它們已經(jīng)在口袋中被攪勻了,請(qǐng)判斷以下是隨機(jī)事件、不可能事件、還是必然事件. (1)從口袋中一次任意取出一個(gè)球,是白球; (2)從口袋中一次任取5個(gè)球,全是藍(lán)球; (3)從口袋中一次任取5個(gè)球,只有藍(lán)球和白球,沒(méi)有紅球; (4)從口袋中一次任意取出6個(gè)球,恰好紅、藍(lán)、白三種顏色的球都齊了. 解:(1)隨機(jī)事件;(2)不可能事件;(3)隨機(jī)事件;(4)隨機(jī)事件. 環(huán)節(jié)3 課堂小結(jié),當(dāng)堂達(dá)標(biāo) (學(xué)生總結(jié),老師點(diǎn)評(píng)) 練習(xí)設(shè)計(jì) 請(qǐng)完成本課時(shí)對(duì)應(yīng)練習(xí)!? 2 頻率的穩(wěn)定性 第1課時(shí) 頻率及其穩(wěn)定性 教學(xué)目標(biāo) 一、基本目標(biāo) 1.通過(guò)試驗(yàn)理解當(dāng)試驗(yàn)次數(shù)較大時(shí),試驗(yàn)頻率穩(wěn)定在某一常數(shù)附近,并據(jù)此能估計(jì)出某一事件發(fā)生的頻率. 2.通過(guò)對(duì)實(shí)際問(wèn)題的分析,培養(yǎng)使用數(shù)學(xué)的良好意識(shí),體驗(yàn)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展學(xué)生的應(yīng)用數(shù)學(xué)的能力. 3.在活動(dòng)中進(jìn)一步發(fā)展學(xué)生合作交流的意識(shí)與能力,發(fā)展學(xué)生的辯證思維能力. 二、重難點(diǎn)目標(biāo) 【教學(xué)重點(diǎn)】 估計(jì)某一事件發(fā)生的頻率. 【教學(xué)難點(diǎn)】 大量重復(fù)試驗(yàn)得到頻率的穩(wěn)定值的分析. 教學(xué)過(guò)程 環(huán)節(jié)1 自學(xué)提綱,生成問(wèn)題 【5 min閱讀】 閱讀教材P140~P142的內(nèi)容,完成下面練習(xí). 【3 min反饋】 1.在n次重復(fù)試驗(yàn)中,事件A發(fā)生了m次,則比值稱(chēng)為事件A發(fā)生的頻率. 2.一般地,在試驗(yàn)次數(shù)很大時(shí),某事件發(fā)生的頻率會(huì)在一個(gè)常數(shù)附近擺動(dòng),即該事件發(fā)生的頻率具有穩(wěn)定性. 3.投擲硬幣m次,正面向上n次,其頻率p=,則下列說(shuō)法正確的是( D ) A.p一定等于 B.p一定不等于 C.多投一次,p更接近 D.投擲次數(shù)逐步增加,p穩(wěn)定在附近 4.在綜合實(shí)踐活動(dòng)中,小明、小亮、小穎、小菁四位同學(xué)用投擲一枚圖釘?shù)姆椒ü烙?jì)頂尖朝上的可能性,他們的試驗(yàn)次數(shù)分別為20次、50次、150次、200次,其中,小菁的試驗(yàn)相對(duì)科學(xué). 環(huán)節(jié)2 合作探究,解決問(wèn)題 活動(dòng)1 小組討論(師生互學(xué)) 【例1】在一個(gè)不透明的盒子里裝有紅、黑兩種顏色的球共60只,這些球除顏色外其余完全相同.為了估計(jì)紅球和黑球的個(gè)數(shù),七(4)班的數(shù)學(xué)學(xué)習(xí)小組做了摸球試驗(yàn).他們將球攪勻后,從盒子里隨機(jī)摸出一個(gè)球記下顏色,再把球放回盒子中,多次重復(fù)上述過(guò)程,得到下表中的一組統(tǒng)計(jì)數(shù)據(jù): 摸球的次數(shù)n?? ?50?? ?100?? ?300?? ?500?? ?800?? ?1000?? ?2000 摸到紅球的次數(shù)m?? ?14?? ?33?? ?95?? ?155?? ?241?? ?298?? ?602 摸到紅球的頻率?? ?0.28?? ??? ?0.317?? ?0.31?? ??? ??? ? (1)請(qǐng)將表中的數(shù)據(jù)補(bǔ)充完整; (2)請(qǐng)估計(jì):當(dāng)次數(shù)n足夠大時(shí),摸到紅球的頻率將會(huì)接近________.(精確到0.1) 【互動(dòng)探索】(引發(fā)學(xué)生思考)(1)用摸到紅球的次數(shù)除以摸球的次數(shù),得到摸到紅球的頻率;(2)從上面的試驗(yàn)可以發(fā)現(xiàn),雖然每次摸出的結(jié)果是隨機(jī)的、無(wú)法預(yù)測(cè)的,但隨著試驗(yàn)次數(shù)的增加,摸到紅球的頻率將會(huì)接近0.3. 【解答】(1)0.33 0.301 0.298 0.301 (2)0.3 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))熟記頻率的定義和穩(wěn)定性是解此題的關(guān)鍵. 【例2】一個(gè)不透明的盒子里裝有除顏色外其他都相同的紅球6個(gè)和白球若干個(gè),每次隨機(jī)摸出一個(gè)球,記下顏色后放回,搖勻后再摸,通過(guò)多次試驗(yàn)發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在0.3左右,則盒子中白球可能有( ) A.12個(gè) ?? ?B.14個(gè) C.18個(gè) ?? ?D.20個(gè) 【互動(dòng)探索】(引發(fā)學(xué)生思考)設(shè)袋中白球的個(gè)數(shù)為a.根據(jù)題意,得0.3=,解得a=14. 故盒子中白球可能有14個(gè). 【答案】B 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))本題也可以直接用紅球的個(gè)數(shù)除以得到紅球的頻率求得球的總個(gè)數(shù),再減去紅球的個(gè)數(shù). 活動(dòng)2 鞏固練習(xí)(學(xué)生獨(dú)學(xué)) 1.某種彩票的中獎(jiǎng)機(jī)會(huì)是1%,下列說(shuō)法正確的是( D ) A.買(mǎi)一張這種彩票一定不會(huì)中獎(jiǎng) B.買(mǎi)一張這種彩票一定會(huì)中獎(jiǎng) C.買(mǎi)100張這種彩票一定會(huì)中獎(jiǎng) D.當(dāng)購(gòu)買(mǎi)彩票的數(shù)量很大時(shí),中獎(jiǎng)的頻率穩(wěn)定在1% 2.在一個(gè)不透明的塑料袋中裝有紅色、白色球共80個(gè),除顏色外其他都相同,小明將球攪拌均勻后,任意摸出1個(gè)球記下顏色,再放回塑料袋中,通過(guò)大量重復(fù)試驗(yàn)后發(fā)現(xiàn),其中摸到紅色球的頻率穩(wěn)定在30%附近,則塑料袋中白色球的個(gè)數(shù)為( A ) A.24 ?? ?B.30 C.50 ?? ?D.56 3.一粒木質(zhì)的中國(guó)象棋子“車(chē)”,它的正面雕刻一個(gè)“車(chē)”字,它的反面是平的.將它從一定高度擲下,落地反彈后可能是“車(chē)”字面朝上,也可能是“車(chē)”字面朝下.七年級(jí)某試驗(yàn)小組做了擲棋子的試驗(yàn),試驗(yàn)數(shù)據(jù)如下表: 試驗(yàn)次數(shù)?? ?20?? ?80?? ?100?? ?160?? ?200?? ?240?? ?300?? ?360?? ?400 “車(chē)”字朝上的頻數(shù)?? ?14?? ?48?? ?50?? ?84?? ?112?? ?144?? ?172?? ?204?? ?228 相應(yīng)的頻率?? ?0.70?? ?0.60?? ??? ?0.53?? ?0.56?? ?0.60?? ??? ??? ?0.57 (1)請(qǐng)將數(shù)據(jù)表補(bǔ)充完整; (2)根據(jù)上表,畫(huà)出“車(chē)”字面朝上的頻率的折線(xiàn)統(tǒng)計(jì)圖; (3)如將試驗(yàn)繼續(xù)進(jìn)行下去,根據(jù)上表的數(shù)據(jù),這個(gè)試驗(yàn)的頻率將穩(wěn)定在多少? 解:(1)0.50 0.57 0.57 (2)根據(jù)題意畫(huà)圖如下: (3)如將試驗(yàn)繼續(xù)進(jìn)行下去,根據(jù)上表的數(shù)據(jù),這個(gè)試驗(yàn)的頻率將穩(wěn)定在0.57左右. 環(huán)節(jié)3 課堂小結(jié),當(dāng)堂達(dá)標(biāo) (學(xué)生總結(jié),老師點(diǎn)評(píng)) 1.頻率的定義 在n次重復(fù)試驗(yàn)中,事件A發(fā)生了m次,則比值稱(chēng)為事件A發(fā)生的頻率. 2.頻率的穩(wěn)定性 練習(xí)設(shè)計(jì) 請(qǐng)完成本課時(shí)對(duì)應(yīng)練習(xí)! 第2課時(shí) 用頻率估計(jì)概率 教學(xué)目標(biāo) 一、基本目標(biāo) 1.知道通過(guò)大量重復(fù)試驗(yàn)時(shí)的頻率可以作為事件發(fā)生概率的估計(jì)值. 2.在具體情境中理解并掌握概率的意義,能根據(jù)某些事件發(fā)生的頻率來(lái)估計(jì)該事件發(fā)生的概率. 3.讓學(xué)生經(jīng)歷“猜想試驗(yàn)——收集數(shù)據(jù)——分析結(jié)果”的探索過(guò)程,豐富對(duì)隨機(jī)現(xiàn)象的體驗(yàn),體會(huì)概率是描述不確定現(xiàn)象規(guī)律的數(shù)學(xué)模型,初步理解頻率與概率的關(guān)系. 二、重難點(diǎn)目標(biāo) 【教學(xué)重點(diǎn)】 根據(jù)某些事件發(fā)生的頻率來(lái)估計(jì)該事件發(fā)生的概率. 【教學(xué)難點(diǎn)】 理解頻率與概率的關(guān)系. 教學(xué)過(guò)程 環(huán)節(jié)1 自學(xué)提綱,生成問(wèn)題 【5 min閱讀】 閱讀教材P143~P145的內(nèi)容,完成下面練習(xí). 【3 min反饋】 1.概率:用常數(shù)來(lái)表示事件A發(fā)生的可能性的大小,我們把刻畫(huà)事件A發(fā)生的可能性大小的數(shù)值,稱(chēng)為事件A發(fā)生的概率,記為P(A). 2.一般地,大量重復(fù)試驗(yàn)中,我們常用隨機(jī)事件A發(fā)生的頻率來(lái)估計(jì)事件A發(fā)生的概率. 3.必然事件發(fā)生的概率為1;不可能事件發(fā)生的概率為0;隨機(jī)事件A發(fā)生的概率P(A)是0與1之間的一個(gè)常數(shù). 4.用頻率估計(jì)概率,可以發(fā)現(xiàn),某種幼樹(shù)在一定條件下移植成活的概率為0.9,下列說(shuō)法正確的是( D ) A.種植10棵幼樹(shù),結(jié)果一定有9棵幼樹(shù)成活 B.種植100棵幼樹(shù),結(jié)果一定是90棵幼樹(shù)成活和10棵幼樹(shù)不成活 C.種植10n棵幼樹(shù),恰好有n棵幼樹(shù)不成活 D.種植n棵幼樹(shù),當(dāng)n越來(lái)越大時(shí),種植成活幼樹(shù)的頻率會(huì)越來(lái)越穩(wěn)定于0.9 5.在一次統(tǒng)計(jì)中,調(diào)查英文文獻(xiàn)中字母E的使用率,在幾段文獻(xiàn)中,統(tǒng)計(jì)字母E的使用數(shù)據(jù)得到下列表中部分?jǐn)?shù)據(jù): 文獻(xiàn)字母?jìng)€(gè)數(shù)?? ?字母E的個(gè)數(shù)?? ?字母E的使用率 982?? ?121?? ?0.123 11 237?? ?903?? ?0.080 534 406?? ?52 381?? ?0.098 33 569 792?? ?3 411 079?? ?0.102 108 274 953?? ?107 192 201?? ?0.99 2 195 680 075?? ?220 665 847?? ?0.101 (1)請(qǐng)將上表補(bǔ)充完整; (2)通過(guò)計(jì)算表中數(shù)據(jù)可以發(fā)現(xiàn),字母E的使用頻率在0.1左右擺動(dòng),并且隨著統(tǒng)計(jì)數(shù)據(jù)的增加,這種規(guī)律愈加明顯,所以估計(jì)字母E在文獻(xiàn)中使用概率是0.1. 環(huán)節(jié)2 合作探究,解決問(wèn)題 活動(dòng)1 小組討論(師生互學(xué)) 【例題】隨機(jī)擲一枚圖釘,落地后只能出現(xiàn)兩種情況:“釘尖朝上”和“釘尖朝下”.這兩種情況的可能性一樣大嗎? (1)求真小組的同學(xué)們進(jìn)行了試驗(yàn),并將試驗(yàn)數(shù)據(jù)匯總填入下表. 試驗(yàn)總次數(shù)n?? ?20?? ?40?? ?80?? ?120?? ?160?? ?200?? ?240?? ?280?? ?320?? ?360?? ?400 “釘尖朝上”的次數(shù)m?? ?4?? ?12?? ?32?? ?60?? ?100?? ?140?? ?156?? ?196?? ?200?? ?216?? ?248 “釘尖朝上”m的頻率n?? ?0.2?? ?0.3?? ?0.4?? ?0.5?? ?0.625?? ?0.7?? ?0.65?? ?0.7?? ?①?? ?②?? ?③ 請(qǐng)補(bǔ)全表格:①______,②______,③______; (2)為了加大試驗(yàn)的次數(shù),老師用計(jì)算機(jī)進(jìn)行了模擬試驗(yàn),將試驗(yàn)數(shù)據(jù)制成如圖所示的折線(xiàn)圖. 據(jù)此,同學(xué)們得出三個(gè)推斷: ①當(dāng)投擲次數(shù)是500時(shí),計(jì)算機(jī)記錄“釘尖朝上”的次數(shù)是308,所以“釘尖朝上”的概率是0.616; ②隨著試驗(yàn)次數(shù)的增加,“釘尖朝上”的頻率在0.618附近擺動(dòng),顯示出一定的穩(wěn)定性,據(jù)此估計(jì)“釘尖朝上”的概率是0.618; ③若再次用計(jì)算機(jī)模擬試驗(yàn),當(dāng)投擲次數(shù)為1000時(shí),則“釘尖朝上”的次數(shù)一定是620次. 其中合理的是________; (3)向善小組的同學(xué)們也做了1000次擲圖釘?shù)脑囼?yàn),其中640次“釘尖朝上”.據(jù)此,他們認(rèn)為“釘尖朝上”的可能性比“釘尖朝下”的可能性大.你贊成他們的說(shuō)法嗎?請(qǐng)說(shuō)出你的理由. 【互動(dòng)探索】(引發(fā)學(xué)生思考)(1)根據(jù)頻率的定義求解可得;(2)根據(jù)頻率估計(jì)概率判斷即可;(3)根據(jù)概率的意義,結(jié)合題意可得答案. 【解答】(1)0.625 0.6 0.62 (2)② (3)贊成.理由:隨機(jī)投擲一枚圖釘1000次,其中“針尖朝上”的次數(shù)為640,“針尖朝上”的頻率為0.64,試驗(yàn)次數(shù)足夠大,足以說(shuō)明“釘尖朝上”的可能性大,故贊成他們的說(shuō)法. 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))用一個(gè)事件發(fā)生的頻率估計(jì)這一事件發(fā)生的概率時(shí),兩者之間總存在一定的差異.當(dāng)試驗(yàn)次數(shù)很多時(shí),隨機(jī)事件出現(xiàn)的頻率穩(wěn)定在相應(yīng)的概率附近. 活動(dòng)2 鞏固練習(xí)(學(xué)生獨(dú)學(xué)) 1.下表記錄了一名球員在罰球線(xiàn)上投籃的結(jié)果,這么球員投籃一次,投中的概率約是( C ) 投籃次數(shù)?? ?10?? ?50?? ?100?? ?150?? ?200?? ?250?? ?300?? ?500 投中次數(shù)?? ?4?? ?35?? ?60?? ?78?? ?104?? ?123?? ?152?? ?251 投中頻率?? ?0.40?? ?0.70?? ?0.60?? ?0.52?? ?0.52?? ?0.49?? ?0.51?? ?0.50 A.0.7 ?? ?B.0.6 C.0.5 ?? ?D.0.4 2.口袋中有9個(gè)球,其中4個(gè)紅球、3個(gè)藍(lán)球、2個(gè)白球.在下列事件中,發(fā)生的可能性為1的是( C ) A.從口袋中拿一個(gè)球恰為紅球 B.從口袋中拿出2個(gè)球都是白球 C.拿出6個(gè)球中至少有一個(gè)球是紅球 D.從口袋中拿出的球恰為3紅2白 3.甲、乙兩位同學(xué)在一次用頻率估計(jì)概率的試驗(yàn)中統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,給出的統(tǒng)計(jì)圖如圖所示,則符合這一結(jié)果的試驗(yàn)可能是( D ) A.?dāng)S一枚正六面體的骰子,出現(xiàn)5點(diǎn)的概率 B.?dāng)S一枚硬幣,出現(xiàn)正面朝上的概率 C.任意寫(xiě)出一個(gè)整數(shù),能被2整除的概率 D.一個(gè)袋子中裝著只有顏色不同,其他都相同的兩個(gè)紅球和一個(gè)黃球,從中任意取出一個(gè)是黃球的概率 環(huán)節(jié)3 課堂小結(jié),當(dāng)堂達(dá)標(biāo) (學(xué)生總結(jié),老師點(diǎn)評(píng)) 練習(xí)設(shè)計(jì) 請(qǐng)完成本課時(shí)對(duì)應(yīng)練習(xí)! ? 3 等可能事件的概率 第1課時(shí) 概率的計(jì)算方法 教學(xué)目標(biāo) 一、基本目標(biāo) 理解和掌握概率的計(jì)算方法,體會(huì)概率是描述隨機(jī)現(xiàn)象的數(shù)學(xué)模型. 二、重難點(diǎn)目標(biāo) 【教學(xué)重點(diǎn)】 概率的計(jì)算方法. 【教學(xué)難點(diǎn)】 靈活應(yīng)用概率的計(jì)算方法解決各種類(lèi)型的實(shí)際問(wèn)題. 教學(xué)過(guò)程 環(huán)節(jié)1 自學(xué)提綱,生成問(wèn)題 【5 min閱讀】 閱讀教材P147~P148的內(nèi)容,完成下面練習(xí). 【3 min反饋】 1.設(shè)一個(gè)試驗(yàn)的所有可能的結(jié)果有n種,每次試驗(yàn)有且只有其中一種結(jié)果出現(xiàn).如果每種結(jié)果出現(xiàn)的可能性相同,那么我們就稱(chēng)這個(gè)試驗(yàn)的結(jié)果是等可能的. 2.一般地,如果一個(gè)試驗(yàn)有n種等可能的結(jié)果,事件A包含其中m種結(jié)果,那么事件A發(fā)生的概率為P(A)=. 3.完成教材P147“議一議”第1題: 解:(1)會(huì)摸到1號(hào)球、2號(hào)球、3號(hào)球、4號(hào)球、5號(hào)球這5種可能的結(jié)果. (2)相同.它們的概率均為. 4.完成教材P147“議一議”第2題: 解:所有可能的結(jié)果有有限個(gè),每種結(jié)果出現(xiàn)的可能性相等. 環(huán)節(jié)2 合作探究,解決問(wèn)題 活動(dòng)1 小組討論(師生互學(xué)) 【例題】一只不透明的箱子里共有8個(gè)球,其中2個(gè)白球、1個(gè)紅球、5個(gè)黃球,它們除顏色外均相同. (1)從箱子中隨機(jī)摸出一個(gè)球是白球的概率是多少? (2)再往箱子中放入多少個(gè)黃球,可以使摸到白球的概率變?yōu)?.2? 【互動(dòng)探索】(引發(fā)學(xué)生思考)(1)從袋中任意摸出一個(gè)球,可能出現(xiàn)的結(jié)果有多少種?滿(mǎn)足條件的結(jié)果有多少種?(2)已知摸到白球的概率,可以根據(jù)概率公式列方程求解. 【解答】(1)因?yàn)橐恢徊煌该鞯南渥永锕灿?個(gè)球,其中2個(gè)白球, 所以從箱子中隨機(jī)摸出一個(gè)球是白球的概率是=. (2)設(shè)再往箱子中放入x個(gè)黃球. 根據(jù)題意,得=0.2, 解得x=2. 故再往箱子中放入2個(gè)黃球,可以使摸到白球的概率變?yōu)?.2. 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))(1)求概率主要是求隨機(jī)事件發(fā)生的概率,關(guān)鍵是分別求出事件所有可能出現(xiàn)的結(jié)果數(shù)和所求的隨機(jī)事件可能出現(xiàn)的結(jié)果數(shù),后者與前者的比值即為該事件發(fā)生的概率.(2)第(2)問(wèn)也可以根據(jù)概率公式直接用除法求出盒子中球的總數(shù),從而求出還需要往箱子中放入的黃球個(gè)數(shù). 活動(dòng)2 鞏固練習(xí)(學(xué)生獨(dú)學(xué)) 1.完成教材P148“習(xí)題6.4”第1~3題. 略 2.已知一個(gè)口袋中裝有7個(gè)只有顏色不同的球,其中3個(gè)白球、4個(gè)黑球. (1)求從中隨機(jī)抽取出一個(gè)黑球的概率是多少? (2)若往口袋中再放入x個(gè)白球和y個(gè)黑球,從口袋中隨機(jī)取出一個(gè)白球的概率是,求y與x之間的函數(shù)關(guān)系式. 解:(1)因?yàn)橐粋€(gè)口袋中裝有7個(gè)只有顏色不同的球,其中3個(gè)白球、4個(gè)黑球, 所以從中隨機(jī)抽取出一個(gè)黑球的概率是. (2)因?yàn)榭诖杏?個(gè)白球、4個(gè)黑球,再放入x個(gè)白球和y個(gè)黑球,從口袋中隨機(jī)取出一個(gè)白球的概率是, 所以=,則y=3x+5. 環(huán)節(jié)3 課堂小結(jié),當(dāng)堂達(dá)標(biāo) (學(xué)生總結(jié),老師點(diǎn)評(píng)) 一般地,如果一個(gè)試驗(yàn)有n種等可能的結(jié)果,事件A包含其中m種結(jié)果,那么事件A發(fā)生的概率為P(A)=. 練習(xí)設(shè)計(jì) 請(qǐng)完成本課時(shí)對(duì)應(yīng)練習(xí)! 第2課時(shí) 游戲的公平性及按要求設(shè)計(jì)游戲 教學(xué)目標(biāo) 一、基本目標(biāo) 理解游戲的公平性,并能根據(jù)不同問(wèn)題的要求設(shè)計(jì)出符合條件的摸球游戲. 二、重難點(diǎn)目標(biāo) 【教學(xué)重點(diǎn)】 判斷游戲的公平性,根據(jù)題目題目要求設(shè)計(jì)游戲方案. 【教學(xué)難點(diǎn)】 按題目要求設(shè)計(jì)游戲方案. 教學(xué)過(guò)程 環(huán)節(jié)1 自學(xué)提綱,生成問(wèn)題 【5 min閱讀】 閱讀教材P149~P150的內(nèi)容,完成下面練習(xí). 【3 min反饋】 1.用概率判斷游戲的公平性:若獲勝的概率相同,則游戲公平;若獲勝的概率不相同,則游戲不公平. 2.按要求設(shè)計(jì)游戲:若設(shè)計(jì)公平的游戲,則要使隨機(jī)事件發(fā)生的概率相等;若設(shè)計(jì)不公平的游戲,則要使隨機(jī)事件發(fā)生的概率不相等. 3.完成教材P149“議一議”: 解:(1)第二位同學(xué)說(shuō)的有道理. (2)不公平.游戲是否公平,應(yīng)看雙方獲勝的概率是否相等. 4.完成教材P149“做一做”: 解:(1)在一個(gè)不透明的口袋里裝入除顏色外完全相同的2個(gè)紅球、2個(gè)白球,搖勻后,從中任摸一球,則摸到紅球的概率為,摸到白球的概率也為. (2)在一個(gè)不透明的口袋里裝入除顏色外完全相同的2個(gè)紅球、1個(gè)白球和1個(gè)黃球,搖勻后,從中任摸一球,則摸到紅球的概率為,摸到白球和黃球的概率都為. 環(huán)節(jié)2 合作探究,解決問(wèn)題 活動(dòng)1 小組討論(師生互學(xué)) 【例1】小明和小紅一起做游戲,在一個(gè)不透明的袋中有8個(gè)白球和6個(gè)紅球,它們除顏色外都相同,從袋中任意摸出一球,若摸到白球小明勝;若摸到紅球小紅勝,這個(gè)游戲公平嗎?請(qǐng)說(shuō)明理由;若你認(rèn)為不公平,請(qǐng)你改動(dòng)一下規(guī)則,使游戲?qū)﹄p方都是公平的. 【互動(dòng)探索】(引發(fā)學(xué)生思考)根據(jù)概率公式可計(jì)算出P(小明勝)和P(小紅勝),再比較兩個(gè)概率的大小即可判定游戲不公平,然后改動(dòng)規(guī)則,滿(mǎn)足袋中白球和紅球的個(gè)數(shù)相等即可. 【解答】不公平.理由如下: 因?yàn)镻(小明勝)==,P(小紅勝)==, 而>,即P(小明勝)>P(小紅勝), 所以這個(gè)游戲不公平. 可改為:從袋中取出2個(gè)白球或放入2個(gè)紅球,使袋中白球和紅球的個(gè)數(shù)相等,這樣游戲?qū)﹄p方都是公平的. 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))判斷游戲?qū)﹄p方是否公平,關(guān)鍵是看雙方在游戲中所關(guān)注的事件發(fā)生的概率是否相等. 【例2】用12個(gè)除顏色外完全相同的球設(shè)計(jì)一個(gè)摸球游戲. (1)使得摸到紅球、白球和藍(lán)球的概率都是; (2)使得摸到紅球的概率為,摸到白球的概率為,摸到藍(lán)球的概率為. 【互動(dòng)探索】(引發(fā)學(xué)生思考)根據(jù)摸到各種顏色球的概率,求出它們的個(gè)數(shù),便可進(jìn)行游戲的設(shè)計(jì). 【解答】(1)根據(jù)概率的計(jì)算公式可知,P(摸到紅球)=,所以摸到紅球可能出現(xiàn)的結(jié)果數(shù)=所有可能出現(xiàn)的結(jié)果數(shù)×P(摸到紅球)=12×=4;同理可得摸到白球和藍(lán)球可能出現(xiàn)的結(jié)果數(shù)均為4,所以只要使得紅球、白球和藍(lán)球的數(shù)目均為4個(gè),就能滿(mǎn)足題目要求. (2)同理,由(1)可知,只要使得紅球的數(shù)目為4個(gè),白球的數(shù)目為6個(gè),藍(lán)球的數(shù)目為2個(gè),就能滿(mǎn)足題目要求. 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))靈活運(yùn)用概率的計(jì)算公式求出各色球的個(gè)數(shù)是解題的關(guān)鍵. 活動(dòng)2 鞏固練習(xí)(學(xué)生獨(dú)學(xué)) 1.有8個(gè)大小相同的球,設(shè)計(jì)一個(gè)摸球游戲,使摸到白球的概率為,摸到紅球的概率為,摸到黃球的概率為,摸到綠球的概率為0,則白球有4個(gè),紅球有2個(gè),綠球有0個(gè). 2.有一盒子中裝有3個(gè)白色乒乓球、2個(gè)黃色乒乓球、1個(gè)紅色乒乓球,6個(gè)乒乓球除顏色外形狀和大小完全一樣,李明同學(xué)從盒子中任意摸出一乒乓球. (1)你認(rèn)為李明同學(xué)摸出的球,最有可能是白色顏色; (2)請(qǐng)你計(jì)算摸到每種顏色乒乓球的概率; (3)李明和王濤同學(xué)一起做游戲,李明或王濤從上述盒子中任意摸一球,如果摸到白球,李明獲勝,否則王濤獲勝.這個(gè)游戲?qū)﹄p方公平嗎?為什么? 解:(2)P(摸到白色乒乓球)==,P(摸到黃色乒乓球)==,P(摸到紅色乒乓球)=. (3)公平.理由如下:因?yàn)镻(摸到白色乒乓球)=,P(摸到其他球)==,所以這個(gè)游戲?qū)﹄p方公平. 3.現(xiàn)在有足夠多除顏色外均相同的球,請(qǐng)你從中選12個(gè)球設(shè)計(jì)摸球游戲.(要求寫(xiě)出設(shè)計(jì)方案) (1)使摸到紅球的概率和摸到白球的概率相等; (2)使摸到紅球、白球、黑球的概率都相等; (3)使摸到紅球的概率和摸到白球的概率相等,且都小于摸到黑球的概率. 解:(1)12個(gè)球中,有6個(gè)紅球、6個(gè)白球可使摸到紅球的概率和摸到白球的概率相等. (2)12個(gè)球中,有4個(gè)紅球、4個(gè)白球、4個(gè)黑球可使摸到紅球、白球、黑球的概率都相等. (3)12個(gè)球中,有3個(gè)紅球、3個(gè)白球、6個(gè)黑球可使摸到紅球的概率和摸到白球的概率相等,且都小于摸到黑球的概率. 環(huán)節(jié)3 課堂小結(jié),當(dāng)堂達(dá)標(biāo) (學(xué)生總結(jié),老師點(diǎn)評(píng)) 1.游戲的公平性 2.按要求設(shè)計(jì)游戲 練習(xí)設(shè)計(jì) 請(qǐng)完成本課時(shí)對(duì)應(yīng)練習(xí)! 第3課時(shí) 幾何圖形中的概率 教學(xué)目標(biāo) 一、基本目標(biāo) 1.理解和掌握與面積有關(guān)的一類(lèi)事件發(fā)生的概率的計(jì)算方法,并能進(jìn)行簡(jiǎn)單的計(jì)算. 2.能設(shè)計(jì)符合要求的簡(jiǎn)單概率模型,進(jìn)一步體會(huì)概率的意義. 二、重難點(diǎn)目標(biāo) 【教學(xué)重點(diǎn)】 能計(jì)算與面積有關(guān)的一類(lèi)事件發(fā)生的概率. 【教學(xué)難點(diǎn)】 能設(shè)計(jì)符合要求的簡(jiǎn)單概率模型. 教學(xué)過(guò)程 環(huán)節(jié)1 自學(xué)提綱,生成問(wèn)題 【5 min閱讀】 閱讀教材P151~P152的內(nèi)容,完成下面練習(xí). 【3 min反饋】 1.如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱(chēng)這樣的概率模型為幾何概率模型. 2.與面積有關(guān)的幾何概率也就是概率的大小與面積大小有關(guān),事件發(fā)生的概率等于此事件所有可能結(jié)果所組成的圖形的面積除以所有可能結(jié)果所組成的圖形的總面積. 3.完成教材P152“想一想”: 解:(1)圖中共有20塊方磚組成,這些方磚除顏色外其他完全相同,小球停留在任何一塊方磚上的概率都相等,所以P(小球停留在白磚上)==. (2)同意.因?yàn)榇泄灿?0個(gè)球,這些球除顏色外其他都相同,從中任意摸出一個(gè)球,這20個(gè)球被摸到的概率都相等,所以P(任意摸出一球是白球)==. 環(huán)節(jié)2 合作探究,解決問(wèn)題 活動(dòng)1 小組討論(師生互學(xué)) 【例1】如圖,有甲、乙兩種地板樣式,如果小球分別在上面自由滾動(dòng),設(shè)小球在甲種地板上最終停留在黑色區(qū)域的概率為P1,在乙種地板上最終停留在黑色區(qū)域的概率為P2,則( ) A.P1>P2 ?? ?B.P1<P2 C.P1=P2 ?? ?D.以上都有可能 【互動(dòng)探索】(引發(fā)學(xué)生思考)由圖甲可知,黑色方磚6塊,共有16塊方磚,所以黑色方磚在整個(gè)地板中所占的比值為=,所以在甲種地板上最終停留在黑色區(qū)域的概率為P1=;由圖乙可知,黑色方磚3塊,共有9塊方磚,所以黑色方磚在整個(gè)地板中所占的比值==,所以在乙種地板上最終停留在黑色區(qū)域的概率為P2=.因?yàn)椋?,所以P1>P2. 【答案】A 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))利用公式求幾何概率通常分為三步:(1)分析事件所占面積與總面積的關(guān)系;(2)計(jì)算出各部分的面積;(3)代入公式求出幾何概率. 【例2】如圖,一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)被均勻的分成了20個(gè)扇形區(qū)域,其中一部分被陰影覆蓋. (1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)停止時(shí),指針落在陰影部分的概率是多少? (2)試再選一部分扇形涂上陰影,使得轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)停止時(shí),指針落在陰影部分的概率變?yōu)? 【互動(dòng)探索】(引發(fā)學(xué)生思考)(1)先確定在圖中陰影區(qū)域的面積在整個(gè)面積中所占的比例,根據(jù)這個(gè)比例即可求出指針指向陰影區(qū)域的概率;(2)根據(jù)概率等于相應(yīng)的面積與總面積之比得出陰影部分面積即可. 【解答】(1)因?yàn)檗D(zhuǎn)盤(pán)被均勻的分成了20個(gè)扇形區(qū)域,陰影部分占其中的6份, 所以轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)停止時(shí),指針落在陰影部分的概率==. (2)如圖所示,當(dāng)轉(zhuǎn)盤(pán)停止時(shí),指針落在陰影部分的概率變?yōu)? 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))在幾何概型中若是等分圖形,則只需求出總的圖形個(gè)數(shù)與某事件發(fā)生的圖形個(gè)數(shù);若不是等分圖形,則需求出各圖形面積的大?。? 活動(dòng)2 鞏固練習(xí)(學(xué)生獨(dú)學(xué)) 1.有一把鑰匙藏在如圖所示的16塊正方形瓷磚的某一塊下面,則鑰匙藏在黑色瓷磚下面的概率是( C ) A. ?? ?B. C. ?? ?D. 2.圖中有四個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán),每個(gè)轉(zhuǎn)盤(pán)被分成若干等分,轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)停止后,指針指向白色區(qū)域的概率相同的是( D ) A.轉(zhuǎn)盤(pán)2與轉(zhuǎn)盤(pán)3?? ?B.轉(zhuǎn)盤(pán)2與轉(zhuǎn)盤(pán)4 C.轉(zhuǎn)盤(pán)3與轉(zhuǎn)盤(pán)4?? ?D.轉(zhuǎn)盤(pán)1與轉(zhuǎn)盤(pán)4 3.太陽(yáng)運(yùn)行的軌道是一個(gè)圓形,古人將之稱(chēng)作“黃道”,并把黃道分為24份,每15度就是一個(gè)節(jié)氣,統(tǒng)稱(chēng)“二十四節(jié)氣”.這一時(shí)間認(rèn)知體系被譽(yù)為“中國(guó)的第五大發(fā)明”.如圖,指針落在驚蟄、春分、清明區(qū)域的概率是. 4.向如圖所示的正三角形區(qū)域內(nèi)扔沙包(區(qū)域中每個(gè)小正三角形除顏色外完全相同),沙包隨機(jī)落在某個(gè)正三角形內(nèi). (1)扔沙包一次,落在圖中陰影區(qū)域的概率是; (2)要使沙包落在圖中陰影區(qū)域和空白區(qū)域的概率均為,還要涂黑幾個(gè)小正三角形?請(qǐng)?jiān)趫D中畫(huà)出. 解:如圖所示,要使沙包落在圖中陰影區(qū)域和空白區(qū)域的概率均為,還要涂黑2個(gè)小正三角形(涂法不唯一). 環(huán)節(jié)3 課堂小結(jié),當(dāng)堂達(dá)標(biāo) (學(xué)生總結(jié),老師點(diǎn)評(píng)) 幾何圖形中的概率計(jì)算公式: P(A)= 練習(xí)設(shè)計(jì) 請(qǐng)完成本課時(shí)對(duì)應(yīng)練習(xí)! 第4課時(shí) 轉(zhuǎn)盤(pán)問(wèn)題 教學(xué)目標(biāo) 一、基本目標(biāo) 計(jì)算轉(zhuǎn)盤(pán)問(wèn)題中的概率,進(jìn)一步理解幾何概型,能設(shè)計(jì)出符合要求的簡(jiǎn)單概率模型. 二、重難點(diǎn)目標(biāo) 【教學(xué)重點(diǎn)】 計(jì)算轉(zhuǎn)盤(pán)問(wèn)題中的概率. 【教學(xué)難點(diǎn)】 設(shè)計(jì)符合要求的簡(jiǎn)單概率模型. 教學(xué)過(guò)程 環(huán)節(jié)1 自學(xué)提綱,生成問(wèn)題 【5 min閱讀】 閱讀教材P154~P155的內(nèi)容,完成下面練習(xí). 【3 min反饋】 1.轉(zhuǎn)盤(pán)問(wèn)題中的概率計(jì)算:指針停留在某扇形內(nèi)的概率等于該扇形的面積除以圓的面積,即P(指針停留在某扇形內(nèi))==. 2.完成教材P154“想一想”: 解:P(落在紅色區(qū)域)==,P(落在白色區(qū)域)===. 環(huán)節(jié)2 合作探究,解決問(wèn)題 活動(dòng)1 小組討論(師生互學(xué)) 【例題】某商場(chǎng)柜臺(tái)為了吸引顧客,打出了一個(gè)小廣告如下: 本專(zhuān)柜為了感謝廣大消費(fèi)者的支持和厚愛(ài),特舉行購(gòu)物抽獎(jiǎng)活動(dòng),中獎(jiǎng)率100%,最高獎(jiǎng)50元.具體方法是:顧客每購(gòu)買(mǎi)100元的商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的機(jī)會(huì),如果轉(zhuǎn)盤(pán)停止后,指針正好對(duì)準(zhǔn)黃、紅、綠、白色區(qū)域,顧客就可以分別獲得50元、20元、10元、5元的購(gòu)物券.(轉(zhuǎn)盤(pán)的各個(gè)區(qū)域均被等分) 請(qǐng)根據(jù)以上信息,解答下列問(wèn)題: (1)小亮的媽媽購(gòu)物150元,她獲得50元、5元購(gòu)物券的概率分別是多少? (2)請(qǐng)?jiān)谵D(zhuǎn)盤(pán)的適當(dāng)?shù)胤綄?xiě)上一個(gè)區(qū)域的顏色,使得自由轉(zhuǎn)動(dòng)這個(gè)轉(zhuǎn)盤(pán),當(dāng)它停止轉(zhuǎn)動(dòng)時(shí),指針落在某一區(qū)域的事件發(fā)生概率為,并說(shuō)出此事件. 【互動(dòng)探索】(引發(fā)學(xué)生思考)(1)根據(jù)隨機(jī)事件概率大小的求法,找準(zhǔn)兩點(diǎn):①符合條件的情況數(shù);②全部情況的總數(shù),二者的比值就是其發(fā)生的概率的大??;(2)指針落在某一區(qū)域的事件發(fā)生概率為,則該區(qū)域應(yīng)該有6份,據(jù)此解答即可. 【解答】(1)因?yàn)檗D(zhuǎn)盤(pán)被等分為16份,黃色占1份,白色占11份,所以獲得50元、5元購(gòu)物券的概率分別是,. (2)根據(jù)概率的意義可知,若指針落在某一區(qū)域的事件發(fā)生概率為,那么該區(qū)域應(yīng)有16×=6(份).根據(jù)等級(jí)越高,中獎(jiǎng)概率越小的原則,此處應(yīng)涂綠色,事件為獲得10元購(gòu)物券. 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))(1)轉(zhuǎn)盤(pán)中哪種區(qū)域的面積越大,則指針指向哪種區(qū)域的概率越大;(2)根據(jù)幾何概率的大小設(shè)計(jì)概率模型就是選定一個(gè)圖形,再分割圖形,使其中一部分圖形的面積與總面積的比值等于幾何概率. 活動(dòng)2 鞏固練習(xí)(學(xué)生獨(dú)學(xué)) 1.如圖所示的圓形紙板被等分成10個(gè)扇形掛在墻上,玩飛鏢游戲(每次飛鏢均落在紙板上),則飛鏢落在陰影區(qū)域的概率是. 2.完成教材P155“隨堂練習(xí)”第1~2題. 略 3.有一個(gè)質(zhì)地均勻的正12面體,12個(gè)面上分別寫(xiě)有1到12這12個(gè)整數(shù)(每個(gè)面只有一個(gè)整數(shù)且互不相同),投擲這個(gè)正12面體一次,記事件A為“向上一面的數(shù)字是3的整數(shù)倍”,記事件B為“向上一面的數(shù)字是4的整數(shù)倍”請(qǐng)你判斷事件A與事件B,哪個(gè)發(fā)生的概率大,并說(shuō)明理由. 解:因?yàn)镻(A)==,P(B)==,>,所以事件A發(fā)生的概率大于事件B發(fā)生的概率. 4.如圖所示,轉(zhuǎn)盤(pán)被等分成六個(gè)扇形,并在上面依次寫(xiě)上數(shù)字1、2、3、4、5、6. (1)若自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),當(dāng)它停止轉(zhuǎn)動(dòng)時(shí),指針指向奇數(shù)區(qū)的概率是多少? (2)請(qǐng)你用這個(gè)轉(zhuǎn)盤(pán)設(shè)計(jì)一個(gè)游戲,當(dāng)自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)停止時(shí),指針指向的區(qū)域的概率為. 解:(1)指針指向奇數(shù)區(qū)的概率是=. (2)答案不唯一,如:自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)停止時(shí),指針指向大于2的區(qū)域. 環(huán)節(jié)3 課堂小結(jié),當(dāng)堂達(dá)標(biāo) (學(xué)生總結(jié),老師點(diǎn)評(píng)) 轉(zhuǎn)盤(pán)問(wèn)題的概率計(jì)算公式: P(指針停留在某扇形內(nèi))== 練習(xí)設(shè)計(jì) 請(qǐng)完成本課時(shí)對(duì)應(yīng)練習(xí)! 七年級(jí)數(shù)學(xué)下冊(cè)《平行線(xiàn)的性質(zhì)》教學(xué)設(shè)計(jì) 知識(shí)目標(biāo)1.使學(xué)生掌握平行線(xiàn)的三個(gè)性質(zhì),并能運(yùn)用它們作簡(jiǎn)單的推理. ? ? ? ? 2.使學(xué)生了解平行線(xiàn)的性質(zhì)和判定的區(qū)別. 能力目標(biāo): 經(jīng)歷觀察、操作、推理、交流等活動(dòng),發(fā)展推理能力。 情感目標(biāo): 通過(guò)“做一做”激發(fā)學(xué)生的學(xué)習(xí)興趣。 教學(xué)重難疑點(diǎn)1.平行的三個(gè)性質(zhì),是本節(jié)的重點(diǎn),也是本章的重點(diǎn)之一 ? ? ? ? ? ?2.怎樣區(qū)分性質(zhì)和判定,是教學(xué)中的一個(gè)難點(diǎn). 教學(xué)方法:指導(dǎo)探索、研究、發(fā)現(xiàn)法 學(xué)法:自主探索、研究、發(fā)現(xiàn)法 教具學(xué)具準(zhǔn)備投影片、三角板、量角器 教學(xué)過(guò)程: 一:巧設(shè)情景導(dǎo)入新課 問(wèn):我們已經(jīng)學(xué)習(xí)過(guò)平行線(xiàn)的哪些判定方法? 學(xué)生齊答: ? 1.同位角相等,兩直線(xiàn)平行. ? 2.內(nèi)錯(cuò)角相等,兩直線(xiàn)平行. ? 3.同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行. 問(wèn):把這三句話(huà)顛倒每句話(huà)中的前后次序,能得怎樣的三句話(huà)?新的三話(huà)還正確嗎? 學(xué)生齊答: ? 1.兩直線(xiàn)平行,同位角相等。 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2.兩直線(xiàn)平行,內(nèi)錯(cuò)角相等. ? 3.兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ). ? ? ?平行線(xiàn)的判定是由角的關(guān)系得到線(xiàn)的關(guān)系,下面要學(xué)習(xí)由線(xiàn)的關(guān)系得到角的關(guān)系即本節(jié)課學(xué)習(xí)平行線(xiàn)的性質(zhì)教師指出:把一句原本正確的話(huà),顛倒前后順序,得到新的一句話(huà),不保證一定正確.例如,“對(duì)頂角相等”是正確的,倒過(guò)來(lái)說(shuō)“相等的角是對(duì)頂角”就不正確了.因此,上述新的三句話(huà)的正確性,需要進(jìn)一步證明. ? ? ?二合作交流,解讀探究 1.請(qǐng)同學(xué)們作出兩條平行線(xiàn)a∥b,再任意作第三條直線(xiàn)c,思考同位角有何關(guān)系?要求學(xué)生畫(huà)圖并度量所得的同位角是否相等. ? ? 學(xué)生活動(dòng):動(dòng)手實(shí)驗(yàn)、驗(yàn)證(小組做實(shí)驗(yàn)) 2.除了度量?jī)蓚€(gè)同位角的大小之外,還有其他的方法嗎. 學(xué)生活動(dòng):思考并相互交流 裁剪拼圖法 得出結(jié)論:平行線(xiàn)的性質(zhì)一:兩條平行線(xiàn)被第三條直線(xiàn)所截,同位角相等. 3. .請(qǐng)同學(xué)們作出兩條平行線(xiàn)a∥b,再任意作第三條直線(xiàn)c,思考內(nèi)錯(cuò)角有何關(guān)系?你能用性質(zhì)一來(lái)說(shuō)明嗎? 學(xué)生活動(dòng):動(dòng)手寫(xiě)出已知、求證體會(huì)結(jié)論的合理性嚴(yán)格的步驟不要過(guò)高要求 學(xué)生總結(jié)結(jié)論得出結(jié)論: 平行線(xiàn)的性質(zhì)二:兩條平行線(xiàn)被第三條直線(xiàn)所截,內(nèi)錯(cuò)角相等. 4.平行線(xiàn)的性質(zhì)三:兩條平行線(xiàn)被第三條直線(xiàn)所截,同旁?xún)?nèi)角互補(bǔ). ? 簡(jiǎn)單說(shuō)成:兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ). ? ?要求學(xué)生仿照性質(zhì)二,自己寫(xiě)出已知、求證 ?證明.教師請(qǐng)程度 較好的學(xué)生上黑板板演,并巡視課堂,幫助有困難的學(xué)生克服困難,最后對(duì)黑板上學(xué)生的板書(shū)進(jìn)行全班訂正. 三:知識(shí)鞏固層層加深 1如圖所示,AB∥CD,AC∥BD,分別找出與∠1相等或互補(bǔ)的角。 2.如圖,一束平行光線(xiàn) ?AB 與DE 射向一個(gè)水平 鏡面后被反射,此時(shí) ∠1 =∠2,∠3 =∠4. (1)∠1 與∠3的大小有什么關(guān)系? ∠2與∠4 呢? (2)反射光線(xiàn)BC與EF也平行嗎? ? 三 ?課堂小結(jié):平行線(xiàn)的性質(zhì)與判定的區(qū)別: 1.從因果關(guān)系上看 性質(zhì):因?yàn)閮蓷l直線(xiàn)平行,所以……; 判定:因?yàn)椤?,所以?xún)蓷l直線(xiàn)平行. 2.從所起作用上看 性質(zhì):根據(jù)兩條直線(xiàn)平行,去證兩角相等或互補(bǔ): 判定:根據(jù)兩角相等或互補(bǔ),去證兩條直線(xiàn)平行. ? ?四 :布置作業(yè)課本53頁(yè)習(xí)題1,2.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
8 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 第6章概率初步 平行線(xiàn)的性質(zhì) 北師大 年級(jí) 下冊(cè) 數(shù)學(xué) 概率 初步 教案 平行線(xiàn) 性質(zhì) 教學(xué) 設(shè)計(jì)
鏈接地址:http://m.kudomayuko.com/p-1445141.html