《南京郵電學(xué)院信號與系統(tǒng)信號3.6》由會員分享,可在線閱讀,更多相關(guān)《南京郵電學(xué)院信號與系統(tǒng)信號3.6(35頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、6 卷積定理卷積定理(1)時域卷積時域卷積(2)頻域卷積頻域卷積)()()()()()()()(),()(GFYtgtftyGtgFtf則若)()(21)()(GFtgtf7 時域微分和時域積分時域微分和時域積分)()(Ftf若的時間微分傅氏變換為存在時,則有當(dāng))(tfdtdf)(Fjdtdf的時間積分傅氏變換為)(tf)()0()()(FjFdftdeFtftj)(21)(證明:由定義deFjdttdfttj)(21)(求導(dǎo)兩邊對)(Fjdtdf這表明)()()(Fjdttfdnnn重復(fù)求導(dǎo)可得對于時域積分性質(zhì)可如此證明:對于時域積分性質(zhì)可如此證明: tdfdtfttf)()()()()(再
2、利用時域卷積性質(zhì)再利用時域卷積性質(zhì))()0()()(1)()()()(FjFjFdfttftdttfF)()0(此處jFdfFtft)()(, 0)0()(有的積分為零,即若表明函數(shù)在時域中的微分或積分對應(yīng)于其頻譜表明函數(shù)在時域中的微分或積分對應(yīng)于其頻譜在頻域中乘以或除以在頻域中乘以或除以jjFFjdttdft)()(),()(,)()(但是有設(shè)質(zhì)綜合時域微分與積分性)(),()()()(Fdttdfttf再求可先求的頻譜易于求取時,的導(dǎo)數(shù)如果函數(shù))()()()()(ffjF)(lim)(),(lim)(tfftfftt式中)()()()(ftfdddfdtt證明:根據(jù)時域積分性質(zhì)根據(jù)時域積分
3、性質(zhì))()0()()(jdt)()(2)(),()(ffFtf又)()(2)()()0()(fFj)()()()()()0(0ffdddfd)()()()()(ffjF于是dFff)()(0)()(時,才有因此,只有當(dāng)?shù)念l譜例:試求如圖所示信號)(tf -2 -1 0 1 231t)(tf)()( ttf(1)(3)(3)(1)t0)2() 1(3) 1(3)2()()( ttttttf解:2sin2sin633)(22jjeeeejjjj1)()(ff)(2)2(4)(6)(22sin2sin6)(2)()(SaSajF8 頻域微分和積分頻域微分和積分ddFtfjtFtf)()()()()(
4、則若nnndFdtfjt)()()(推廣(1) 頻域微分頻域微分dtetfFtj)()(證明:dtetfjtddFtj)()()(ddFtfjt)()()(重復(fù)求導(dǎo)得重復(fù)求導(dǎo)得 nnndFdtfjt)()()(2)頻域微分頻域微分dFttfjtf)()()()0(的傅里葉變換試求例:若)1 ()1 (),()(tftFtf)1 ()1 ()1 ()1 (ttftftft解:jeFtftfFtf)()1()1 (),()(deFdjttfj)()1 (jjjjeFeddFjejFeddFj)()()()(jeddFjtft)()1 ()1 (應(yīng)用性質(zhì)求傅里葉變換應(yīng)用性質(zhì)求傅里葉變換)(10tet
5、j指數(shù)信號)()(),()(00FetfFtftj則若)(2, 1)(00tjetf令)(cos,sin200ttt正弦信號和余弦信號)(2),(20000tjtjee)()(cos000t1 周期信號的傅里葉變換周期信號的傅里葉變換)()(sin000 jt220000000000)()(2)(21)(21)()(21)()()(21)(cosjjjjtt類似地類似地2200000)()(2)(sinjtt3 一般周期信號一般周期信號TeFtfntjnn2)(00兩邊取傅里葉變換兩邊取傅里葉變換nnnFFtf)(2)()(0周期信號的傅氏變換或頻譜密度,是由無窮周期信號的傅氏變換或頻譜密度,
6、是由無窮多個多個沖激沖激所組成,這些沖激位于諧頻所組成,這些沖激位于諧頻 處,處,0n2乘以里葉級數(shù)的復(fù)系數(shù)沖激強度為指數(shù)形式傅nF的頻譜密度函數(shù)例:求t0cos)(21cos000tjtjeet解:2111FF22100處的沖激,沖激強度為和頻譜密度為位于)()(cos000t)(4tT單位沖激序列00)()(FnTTnTttTt)()()(,為周期的單位沖激信號是以展開為指數(shù)形式傅氏級數(shù)展開為指數(shù)形式傅氏級數(shù)ntjnnTeFt0)(dtetTFTTtjnTn220)(1式中,TdtetTFtTTtTTtjnnT1)(1),)2,2()(220(之間為在ntjntjnnTeTeTt0011)
7、()()(2)(000nTnTt0 T 2T t )(tf)(F0002(1)(02 傅里葉系數(shù)與傅里葉變換傅里葉系數(shù)與傅里葉變換之間的關(guān)系傅里葉復(fù)系數(shù)與相應(yīng)的周期信號的非周期信號的頻譜密度nFF)(00)(lim)(nnnnTTFFTFF上述關(guān)系提供了一種求周期信號傅里葉系數(shù)的上述關(guān)系提供了一種求周期信號傅里葉系數(shù)的方法方法 例:將圖示周期信號展開為指數(shù)型傅里葉級數(shù)例:將圖示周期信號展開為指數(shù)型傅里葉級數(shù)如圖所示的一個周期波形解:周期信號)()(0tftfTT 2T t1)(tfT00 T t)(0tfT/2 0 T/2 t)(1tf)4(2)()(2, 1211TSaTFtfTA則令)2(
8、)(2SaAt ,即在時間上延遲比2)()(10Ttftf)2()(10Ttftf根據(jù)時移性質(zhì)根據(jù)時移性質(zhì) 22210)4(2)()(TjTjeTSaTejFjFjnTjnnnenSaeTnSajFTF)2(21)2(21)(12202000tjnjnnTeenSatf0)2(21)(2周期信號的指數(shù)型傅里葉展開式為:周期信號的指數(shù)型傅里葉展開式為:例:說明下列傅氏變換對成立例:說明下列傅氏變換對成立 21)2()(1) 1 (tjSgntjtSgn2)() 1 (解:)(2)(22SgnSgnjt由對稱性)(1jSgnt由線性)(1)2(jSgnt)()(1)1(2SgnjSgnjtt由微分
9、性質(zhì))(, 1)(0SgnSgn時,)(, 1)(0SgnSgn時,21t的傅里葉變換例:求如圖所示)(tf10t)(tf1)()( ttf0t200)2()(,1)2()()()( jeSaAtftfttf的延時,為單個矩形脈沖解:1)(, 0)(ff又)()2()()()(2jeSajFj)25()(tftf如圖,試畫出例:已知 -10 1 2 t(4)1)(tf -0.5 0 1 t(2)1)2( tf)2(tf -1 0.5 t (2)5 . 2(2)25(tftf0 1.5 3 t (2)25(),()(tfFtf求例:已知25)2(21)25(2)25()2(21)2(),()()
10、,()(jeFtftfFtfFtfFtf解:abjeaFabatf)(1)(一般地)()(tfF如圖,求例:已知解:解:(1)利用對稱性求解利用對稱性求解為如圖所示的矩形脈沖得換成的將)(),(,)(0tFtFtF11t)(0tF)()()(0000tFtFtF)()(000jjeetFF F01001)(F01011cos)(4Sa011cos)(4)(SatF)(2)(2cos)(4011FFttSa由對稱性ttSaF011cos)(2)(2)利用調(diào)制定理求解利用調(diào)制定理求解11)(0F)()()(0000FFFtFtf001cos)(2)(F FttSatf011cos)(2)(3)利用
11、頻域卷積定理利用頻域卷積定理)()()()(000 FF)()()(2)(00101F FF FFtf21)(20011tjtjeetSattSa011cos)(2)(求)(例:求jt1)()(解:)(1)(21)(tjt由對稱性jtt21)(21)()1() 1(3cos2ttt例:求)6cos1 (213cos2tt解:Satt2) 1() 1()6()6()1() 1(6cosSaSattt)6()6(21)1() 1(3cos2SaSaSattt2)63sin(例:求)2(33Sa解:上式)2(2()2(SaAttA矩形脈沖6,21, 32, 3AA33)3()3(21Satttjet
12、tSa2)3()3(21)2(33由頻移性質(zhì))()1(2tedtdt例:求21)()(222)1(2jeteetett解:2)(222jjeteedtdt)()()()(1jIRFtf的傅里葉變換例:已知如圖所示)()(22Ftf的傅里葉變換求信號12t021)(1tf -10 1 t1)(2tf)2(21)2(21)(113tftftf解:設(shè) 0 t1)(3tf21)21()21()()(32tttftf)()(2232jjeeFF)2(41)2(41)2(21)2(21)(113FFtftftf2cos2)2()2(41)(2FFF2cos2)2()2()2()2(41jIRjIR同理,為實數(shù)時,由于, )()()(FFtf)2()2(),2()2()2()2(IIRRFF,即)2(tejt例:求)1(22)2(,)2(, 1)(jjtjeteett解:2cos)2()(2RF作業(yè)作業(yè)3-37(2,4,6,8,10)3-383-40(b)