全國高考文科數學試題目及答案廣東.doc
《全國高考文科數學試題目及答案廣東.doc》由會員分享,可在線閱讀,更多相關《全國高考文科數學試題目及答案廣東.doc(13頁珍藏版)》請在裝配圖網上搜索。
2009年普通高等學校招生全國統(tǒng)一考試(廣東A卷) 數學(文科) 本試卷共4頁,21小題,滿分150分??荚囉脮r120分鐘。 注意事項: 1. 答卷前,考生務必用黑色字跡的鋼筆或簽字筆將自己的姓名和考生號、試室號、座位號填寫在答題卡上。用2B鉛筆將試卷類型(A)填涂在答題卡相應位置上。將條形碼橫貼在答題卡右上角“條形碼粘貼處”。 2. 選擇題每小題選出答案后,用2B鉛筆將答題卡上對應題目懸想的答案信息點涂黑,如需改動,用橡皮擦干凈后,再選涂其他答案,答案不能答在試卷上。 3. 費選擇題必須用黑色字跡鋼筆或簽字筆作答,答案必須寫在答題卡個項目指定區(qū)域內相應位置上;如需改動,先花掉原來的答案,然后再寫上新的答案;不準使用鉛筆和涂改液。不按以上要求作答的答案無效。 4. 作答選做題時,請先用2B鉛筆填涂選做題的題號對應的信息點,在作答。漏涂、錯涂、多涂的,答案無效。 5. 考生必須保持答題卡的整潔??荚嚱Y束后,將試卷和答題卡一并交回。 參考公式: 錐體的體積公式V=,其中S是錐體的底面積,h是錐體的高。 一、選擇題:本大題共10小題,每小題5分,滿分50分。在每小題給出的四個選項中,只有一項是符合題目要求的。 1.已知全集U=R,則正確表示集合M={—1,0,1}和N={}關系的韋恩(Venn)圖是 2.下列n的取值中,使in =1(i是虛數單位)的是 A.n=2 B.n=3 C.n=4 D.n=5 3.已知平面向量a =(x,1),b =(—x,x2 ),則向量a+b A.平行于x軸 B.平行于第一、三象限的角平分線 C.平行于y軸 D.平行于第二、四象限的角平分線 4.若函數是函數的反函數,且,則 A. B. C. D. 5.已知等比數列的公比為正數,且,,則 A. B. C. D. 6.給定下列四個命題: ?、偃粢粋€平面內的兩條直線與另外一個平面都平行,那么這兩個平面相互平行; ②若一個平面經過另一個平面的垂線,那么這兩個平面相互垂直; ③垂直于同一直線的兩條直線相互平行; ④若兩個平面垂直,那么一個平面內與它們的交線不垂直的直線與另一個平面也不垂直。 其中,為真命題的是 A.①和② B.②和③ C.③和④ D.②和④ 7.已知中,的對邊分別為。若,且 ,則 A.2 B. C. D. 8.函數的單調遞增區(qū)間是 A. B.(0,3) C.(1,4) D. 9.函數是 A.最小正周期為的奇函數 B.最小正周期為的偶函數 C.最小正周期為的奇函數 D.最小正周期為的偶函數 10.廣州2010年亞運會火炬?zhèn)鬟f在A,B,C,D,E五個城市之間進行,各城市之間的路線距離(單位:百公里)見右表。若以A為起點,E為終點,每個城市經過且只經過一次,那么火炬?zhèn)鬟f的最短路線距離是 A.20.6 B.21 C.22 D.23 二、填空題:本大題共5小題,考生作答4小題,每小題5分,滿分20分。 (一)必做題(11~13題) 11.某籃球隊6名主力隊員在最近三場比賽中投進的三分球個數如下表所示: 圖1是統(tǒng)計該6名隊員在最近三場比賽中投進的三分球總數的程序框圖,則圖中判斷框應填 ,輸出的= 。 (注:框圖中的賦值符號“=”也可以寫成“”或“:=”) 12.某單位200名職工的年齡分布情況如圖2,現要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機按1~200編號,并按編號順序平均分為40組(1~5號,6~10號,,196~200號)。若第5組抽出的號碼為22,則第8組抽出的號碼應是 。若用分層抽樣方法,則40歲以下年齡段應抽取 人。 13.以點(2,-1)為圓心且與直線相切的圓的方程是_______________________。 (二)選做題(14、15題,考生只能從中選作一題) 14.(坐標系與參數方程選做題)若直線(為參數)與直線垂直,則常數=________。w.w.w.k.s.5.u.c.o.m 15.(幾何證明選講選做題)如圖3,點A,B,C是圓上的點,且,,則圓的面積等于__________________。 三、解答題:本大題共6小題,滿分80分。解答須寫出文字說明、證明過程和演算步驟。 16.(本小題滿分12分) 已知向量與互相垂直,其中. 16. 求和的值; 17. 若,求的值。 17.(本小題滿分13分) 某高速公路收費站入口處的安全標識墩如圖4所示。墩的上半部分是正四棱錐,下半部分是長方體。圖5、圖6分別是該標識墩的正(主)視圖和俯視圖。 (1)請畫出該安全標識墩的側(左)視圖;w.w.w.k.s.5.u.c.o.m (2)求該安全標識墩的體積; (3)證明:直線平面. 18.(本小題滿分13分) 隨機抽取某中學甲、乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數據的莖葉圖如圖7。 (1)根據莖葉圖判斷哪個班的平均身高較高;w.w.w.k.s.5.u.c.o.m (2)計算甲班的樣本方差; (3)現從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率。w.w.w.k.s.5.u.c.o.m 19.(本小題滿分14分) 已知橢圓G的中心在坐標原點,長軸在x軸上,離心率為,兩個焦點分別為和,橢圓G上一點到和的距離之和為12。圓:的圓心為點。 (1)求橢圓G的方程; (2)求面積; (3)問是否存在圓包圍橢圓G?請說明理由。w.w.w.k.s.5.u.c.o.m 20.(本小題滿分14分) 已知點是函數的圖像上一點。等比數列的前n項和為。數列的首項為c,且前n項和滿足 (1)求數列和的通項公式;w.w.w.k.s.5.u.c.o.m (2)若數列的前項和為,問滿足>的最小正整數是多少? 21.(本小題滿分14分)w.w.w.k.s.5.u.c.o.m 已知二次函數的導函數的圖像與直線平行,且在處取得極小值。設函數。w.w.w.k.s.5.u.c.o.m (1)若曲線上的點到點的距離的最小值為,求的值; (2)如何取值時,函數存在零點,并求出零點。 2009年普通高等學校招生全國統(tǒng)一考試(廣東卷) 數學(文科) 參考答案 一、 選擇題 1-10 BCCAB DADAB 1、【解析】由N= { x |x+x=0}得,選B. 2、【解析】因為,故選C. 3、【解析】,由及向量的性質可知,C正確. 4、【解析】函數的反函數是,又,即, 所以,,故,選A. 5、【解析】設公比為,由已知得,即,因為等比數列的公比為正數,所以,故,選B 6、【解析】①錯, ②正確, ③錯, ④正確.故選D 7、【解析】 由a=c=可知,,所以, 由正弦定理得,故選A 8、【解析】,令,解得,故選D 9、【解析】因為為奇函數,,所以選A. 10、【解析】由題意知,所有可能路線有6種: ①,②,③,④,⑤,⑥, 其中, 路線③的距離最短, 最短路線距離等于, 故選B. 二、 填空題 11、【答案】, 【解析】順為是統(tǒng)計該6名隊員在最近三場比賽中投進的三分球總數的程序框圖,所圖中判斷框應填,輸出的s=. 12、【答案】37, 20 【解析】由分組可知,抽號的間隔為5,又因為第5組抽出的號碼為22,所以第6組抽出的號碼為27,第7組抽出的號碼為32,第8組抽出的號碼為37. 40歲以下年齡段的職工數為,則應抽取的人數為人. 13、【解析】將直線化為,圓的半徑,所以圓的方程為 w.w.w.k.s.5.u.c.o.m 14、【答案】 【解析】將化為普通方程為,斜率, 當時,直線的斜率,由得; 當時,直線與直線不垂直. 綜上可知,. 15、【答案】 【解析】連結AO,OB,因為 ,所以,為等邊三角形,故圓O的半徑,圓O的面積. 三、 解答題 16、【解析】(1),,即 又∵, ∴,即,∴ 又 , (2) ∵ , ,即 又 , ∴ w.w.w.k.s.5.u.c.o.m 17、【解析】(1)側視圖同正視圖,如下圖所示. ?。ǎ玻┰摪踩珮俗R墩的體積為: ?。ǎ常┤鐖D,連結EG,HF及 BD,EG與HF相交于O,連結PO. 由正四棱錐的性質可知,平面EFGH , 又 平面PEG 又 平面PEG;w.w.w.k.s.5.u.c.o.m 18、【解析】(1)由莖葉圖可知:甲班身高集中于之間,而乙班身高集中于 之間。因此乙班平均身高高于甲班; (2) 甲班的樣本方差為 =57 (3)設身高為176cm的同學被抽中的事件為A; 從乙班10名同學中抽中兩名身高不低于173cm的同學有:(181,173) (181,176) (181,178) (181,179) (179,173) (179,176) (179,178) (178,173) (178, 176) (176,173)共10個基本事件,而事件A含有4個基本事件; ; 19、【解析】(1)設橢圓G的方程為: ()半焦距為c; 則 , 解得 , 所求橢圓G的方程為:. w.w.w.k.s.5.u.c.o.m (2 )點的坐標為 (3)若,由可知點(6,0)在圓外, 若,由可知點(-6,0)在圓外; 不論K為何值圓都不能包圍橢圓G. 20、【解析】(1), w.w.w.k.s.5.u.c.o.m ,, . 又數列成等比數列, ,所以 ; 又公比,所以 ; 又,, ; 數列構成一個首相為1公差為1的等差數列, , 當, ; (); (2) ;w.w.w.k.s.5.u.c.o.m 由得,滿足的最小正整數為112. 21、【解析】(1)設,則; 又的圖像與直線平行 又在取極小值, , , ; , 設 則 ;w.w.w.k.s.5.u.c.o.m (2)由, 得 當時,方程有一解,函數有一零點; 當時,方程有二解,若,, 函數有兩個零點;若, ,函數有兩個零點; 當時,方程有一解, , 函數有一零點 w.w.w.k.s.5.u.c.o.m- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 全國 高考 文科 數學試題 答案 廣東
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.kudomayuko.com/p-9417537.html