歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)

全等三角形

則 △ A1B1C1≌ △ A2B2C2。A.全等三角形的高相等 B.全等三角形的中線相等。A.形狀相同的兩個三角形是全等三角形。B.面積相等的兩個三角形是全等三角形。C.三個角對應相等的兩個三角形是全等三角形?!?A.全等三角形的對應邊相等 B. 全等三角形的對應角相等。

全等三角形Tag內(nèi)容描述:

1、______________________________________________________________________________________________________________全等三角形一、填空題,命題“垂直于同一條直線的兩直線平行”的題設是___________________________,結論是_______________________________________.,定理“如果直角三角形兩直角邊分別是a、b,斜邊是c,那么a2+b2c2.即直角三角形的兩直角平方和等于斜邊的平方”的逆定理是_________________________________________________________________________.,如圖1,根據(jù)SAS,如果ABAC, ,即可判定ABDACE.圖2ECDPAB圖3ED。

2、2.5 全等三角形第1課時教學目標1.知道什么是全等形、全等三角形及全等三角形的對應元素;2.知道全等三角形的性質(zhì),能用符號正確地表示兩個三角形全等;3.能熟練找出兩個全等三角形的對應角、對應邊。教學重難點【教學重點】全等三角形的性質(zhì)?!窘虒W難點】找全等三角形的對應邊、對應角課前準備無教學過程1、全等形及全等三角形概念的引入(1)顯示:問題:你能發(fā)現(xiàn)這兩個三角形有什么美妙的關系嗎?一般學生都能發(fā)現(xiàn)這兩個三角形是完全重合的。(2)學生自己動手畫一個三角形:邊長為4cm,5cm,7cm.然后剪下來,同桌的兩位同學配合,把兩。

3、2.5 全等三角形第6課時教學目標1.掌握全等三角形的性質(zhì)與判定定理;2.熟練應用全等三角形的判定定理解決問題.教學重難點【教學重點】掌握全等三角形的性質(zhì)與判定定理?!窘虒W難點】應用全等三角形的判定定理解決問題。課前準備無教學過程一、情境導入1判定三角形全等的四種方法:SAS,ASA,AAS,SSS.2怎樣選擇合適的方法解題呢?二、合作探究探究點一:對兩個三角形全等條件的再認識【類型一】 條件開放例1 如圖,ABCEBD,ABBE,要使ABCEBD,則需要補充的條件為____________(填一個即可)解析:需要補充的條件為BCBD或AE或CD.(1)補充的條件。

4、第12章 全等三角形 測試卷(2)一、選擇題1如圖,G,E分別是正方形ABCD的邊AB,BC的點,且AG=CE,AEEF,AE=EF,現(xiàn)有如下結論:BE=GE;AGEECF;FCD=45;GBEECH其中,正確的結論有()A1個B2個C3個D4個2如圖,正方形ABCD中,點E是AD邊中點,BD、CE交于點H,BE、AH交于點G,則下列結論:AGBE;BG=4GE;SBHE=SCHD;AHB=EHD其中正確的個數(shù)是()A1B2C3D43如圖,點E,F(xiàn)在AC上,AD=BC,DF=BE,要使ADFCBE,還需要添加的一個條件是()AA=CBD=BCADBCDDFBE二、填空題4如圖,AC是矩形ABCD的對角線,AB=2,BC=2,點E,F(xiàn)分別是線段AB,AD上的點,連接C。

5、2.5 全等三角形第4課時教學目標1、使學生理解AAS的內(nèi)容,能運用AAS全等識別法來識別三角形全等進而說明線段或角相等;2、通過畫圖、實驗、發(fā)現(xiàn)、應用的過程教學,樹立學生知識源于實踐用于實踐的觀念。使學生體會探索發(fā)現(xiàn)問題的過程。經(jīng)歷自己探索出AAS的三角形全等識別及其應用。教學重難點【教學重點】利用三角形全等的識別法,間接說明角相等或線段相等?!窘虒W難點】三角形全等的識別法AAS及應用。課前準備無教學過程一、復習1、什么叫做全等三角形,如何識別兩個三角形全等?(能夠完全重合的兩個三角形叫做全等三角形。識別兩個三角。

6、2.5 全等三角形第2課時教學目標1理解“邊角邊”判定三角形全等的意義2會運用“SS”識別三角形全等,為證明線段相等或角相等創(chuàng)造條件教學重難點【教學重點】在具體圖形中正確運用“邊角邊”判定三角形全等?!窘虒W難點】在具體圖形中正確運用“邊角邊”判定三角形全等。課前準備無教學過程一、情境導入如圖,在ABO中,延長AO到點C,使COAO,延長BO到點D,使DOBO,連接CD,那么ABO與CDO全等嗎?二、合作探究探究點:用“SAS”判定兩個三角形全等【類型一】 利用“邊角邊”添加條件,判定三角形全等例1 如圖,已知ABCBAD,只需添加條件______。

7、第12章 全等三角形 測試卷(3)一、選擇題1如圖,已知等邊ABC,AB=2,點D在AB上,點F在AC的延長線上,BD=CF,DEBC于E,F(xiàn)GBC于G,DF交BC于點P,則下列結論:BE=CG;EDPGFP;EDP=60;EP=1中,一定正確的是()A BC D二、填空題2如圖,正方形ABCD的邊長為3cm,E為CD邊上一點,DAE=30,M為AE的中點,過點M作直線分別與AD、BC相交于點P、Q若PQ=AE,則AP等于cm3如圖,矩形ABCD中,AB=8,點E是AD上的一點,有AE=4,BE的垂直平分線交BC的延長線于點F,連結EF交CD于點G若G是CD的中點,則BC的長是4如圖,正方形ABCD的邊長為6,點O是對角線AC、BD的交。

8、2.5 全等三角形第3課時教學目標1、理解全等三角形“角邊角”的判定方法2、利用全等證明角相等、線段相等及直線的平行關系;3、熟練掌握證明三角形全等的書寫格式。教學重難點【教學重點】理解全等三角形“角邊角”的判定方法?!窘虒W難點】【教學難點】理解三角形全等的條件與結論之間的關系。課前準備無教學過程一、情境導入小明不慎將一塊三角形的玻璃碎成如圖所示的四塊(圖中所標1、2、3、4),你認為將其中的哪一塊帶去,就能配一塊與原來大小一樣的三角形玻璃?二、合作探究探究點一:用“ASA”判定兩個三角形全等【類型一】 利用角邊。

9、2.5 全等三角形第5課時教學目標1、使學生理解邊邊邊判定定理的內(nèi)容,能運用邊邊邊證明三角形全等,為證明線段相等或角相等創(chuàng)造條件;2、繼續(xù)培養(yǎng)學生畫圖、實驗,發(fā)現(xiàn)新知識的能力。教學重難點【教學重點】靈活運用SSS識別兩個三角形是否全等?!窘虒W難點】讓學生掌握邊邊邊的內(nèi)容和運用定理的自覺性。課前準備無教學過程一、創(chuàng)設問題情境,引入新課請問同學,老師在黑板上畫得兩個三角形,ABC與全等嗎?你是如何識別的。(同學們各抒己見,如:動手用紙剪下一個三角形,剪下疊到另一個三角形上,是否完全重合;測量兩個三角形的所有邊與。

10、第12章 全等三角形 測試卷(1)一、選擇題(共9小題)1如圖,ABCD中,E,F(xiàn)是對角線BD上的兩點,如果添加一個條件,使ABECDF,則添加的條件不能為()ABE=DFBBF=DECAE=CFD1=22如圖,在方格紙中,以AB為一邊作ABP,使之與ABC全等,從P1,P2,P3,P4四個點中找出符合條件的點P,則點P有()A1個B2個C3個D4個3如圖,ABC中,AB=AC,D是BC的中點,AC的垂直平分線分別交AC、AD、AB于點E、O、F,則圖中全等三角形的對數(shù)是()A1對B2對C3對D4對4如圖,已知ABC=DCB,下列所給條件不能證明ABCDCB的是()AA=DBAB=DCCACB=DBCDAC=BD5如圖,在ABC中,ABA。

11、全等三角形復習卷班級________姓名_________一、填空題1. 如圖(1),如果AOC BOD,則對應邊是__________,對應角是_____________;如圖(2),ABC CDA,則對應邊是_____________,對應角是_______________;COBDADCBA(2)(1)2. 已知,A與,與是對應頂點,的周長為10cm,AB =3cm,BC =4cm. 則= cm,= cm,= cm.3. 已知,A與D,B與E分別是對應頂點, ,BC =15cm,則= ,F(xiàn)E = cm.4如圖,AD=AC,BD=BC,O為AB上一點,那么,圖中共有 對全等三角形5把兩根鋼條AA、BB的中點連在一起,可以做成一個測量工件內(nèi)槽寬的工具(卡鉗), 如圖,若測。

12、2016-2017學年度第一學期 八年級數(shù)學期末復習專題 全等三角形姓名:_______________班級:_______________得分:_______________一 選擇題:1.下列結論錯誤的是( ) A.全等三角形對應邊上的中線相等B.兩個直角三角形中,兩個銳角相等,則這兩個三角形全等 C.全等三角形對應邊上的高相等 D.兩個直角三角形中,斜邊和一個銳角對應相等,則這兩個三角形全等2.已知ABCDEF,A=80,E=50,則F的度數(shù)為( )A.30 B.50  。

13、八年級丄數(shù)學期末全等三角形軸對稱復習提優(yōu)題【大海之音組卷】一選擇題(共4小題)1如圖,RtACB中,ACB=90,ABC的角平分線BE和BAC的外角平分線AD相交于點P,分別交AC和BC的延長線于E,D過P作PFAD交AC的延長線于點H,交BC的延長線于點F,連接AF交DH于點G則下列結論:APB=45;PF=PA;BDAH=AB;DG=AP+GH其中正確的是()ABCD2如圖,將30的直角三角尺ABC繞直角頂點A逆時針旋轉到ADE的位置,使B點的對應點D落在BC邊上,連接EB、EC,則下列結論:DAC=DCA;ED為AC的垂直平分線;EB平分AED;ED=2AB其中正確的是()ABCD3如圖,RtACB中,ACB=90,AB。

【全等三角形】相關PPT文檔
八年級數(shù)學上冊 第14章 全等三角形 14.1 全等三角形課件 (新版)滬科版.ppt
八年級數(shù)學上冊《第十二章 全等三角形》課件 (新版)新人教版.ppt
【全等三角形】相關DOC文檔
人教版初二數(shù)學上冊《全等三角形》單元檢測試題.doc
2.5 全等三角形 第1課時
2.5 全等三角形 第6課時
人教版第12章 全等三角形 測試卷(2)
2.5 全等三角形 第4課時
2.5 全等三角形 第2課時
人教版第12章 全等三角形 測試卷(3)
2.5 全等三角形 第3課時
2.5 全等三角形 第5課時
人教版第12章 全等三角形 測試卷(1)
2013學年八年級上《全等三角形》期末復習試卷.doc
南開區(qū)2016年八年級上《全等三角形》期末復習試卷及答案.doc
《全等三角形》《軸對稱》期末復習提優(yōu)題及答案解析.doc
【全等三角形】相關其他文檔
2012-2013年八年級上數(shù)學《全等三角形》期末復習試題.rar
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!