高考數(shù)學 考前3個月知識方法專題訓練 第一部分 知識方法篇 專題6 立體幾何 第26練 完美破解立體幾何的證明問題 文
《高考數(shù)學 考前3個月知識方法專題訓練 第一部分 知識方法篇 專題6 立體幾何 第26練 完美破解立體幾何的證明問題 文》由會員分享,可在線閱讀,更多相關《高考數(shù)學 考前3個月知識方法專題訓練 第一部分 知識方法篇 專題6 立體幾何 第26練 完美破解立體幾何的證明問題 文(15頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第26練 完美破解立體幾何的證明問題 [題型分析高考展望] 立體幾何證明題是高考必考題,證明平行、垂直關系是主要題型,特別是垂直關系尤為重要.掌握判定定理、性質定理并能靈活運用是解題的根本.學會分析推理的方法和證明技巧是提升推理能力的關鍵,在二輪復習中,通過專題訓練,使解立體幾何證明的能力更上一層樓,確保該類題型不失分. 體驗高考 1.(2015福建)若l,m是兩條不同的直線,m垂直于平面α,則“l(fā)⊥m”是“l(fā)∥α”的( ) A.充分而不必要條件 B.必要而不充分條件 C.充分必要條件 D.既不充分也不必要條件 答案 B 解析 m垂直于平面α,當l?α時,也滿足l⊥m,但直線l與平面α不平行,∴充分性不成立,反之,l∥α,一定有l(wèi)⊥m,必要性成立.故選B. 2.(2016山東)已知直線a,b分別在兩個不同的平面α,β內,則“直線a和直線b相交”是“平面α和平面β相交”的( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 答案 A 解析 若直線a和直線b相交,則平面α和平面β相交;若平面α和平面β相交,那么直線a和直線b可能平行或異面或相交,故選A. 3.(2016課標全國甲)如圖,菱形ABCD的對角線AC與BD交于點O,點E,F(xiàn)分別在AD,CD上,AE=CF,EF交BD于點H,將△DEF沿EF折到△D′EF的位置. (1)證明:AC⊥HD′; (2)若AB=5,AC=6,AE=,OD′=2,求五棱錐D′ABCFE的體積. (1)證明 由已知得AC⊥BD,AD=CD,又由AE=CF得=,故AC∥EF,由此得EF⊥HD,折后EF與HD保持垂直關系,即EF⊥HD′,所以AC⊥HD′. (2)解 由EF∥AC得==. 由AB=5,AC=6得DO=BO==4, 所以OH=1,D′H=DH=3, 于是OD′2+OH2=(2)2+12=9=D′H2, 故OD′⊥OH. 由(1)知AC⊥HD′,又AC⊥BD,BD∩HD′=H, 所以AC⊥平面BHD′,于是AC⊥OD′, 又由OD′⊥OH,AC∩OH=O,所以OD′⊥平面ABC. 又由=得EF=. 五邊形ABCFE的面積S=68-3=. 所以五棱錐D′ABCFE的體積V=2=. 4.(2016四川)如圖,在四棱錐PABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90,BC=CD=AD. (1)在平面PAD內找一點M,使得直線CM∥平面PAB,并說明理由; (2)證明:平面PAB⊥平面PBD. (1)解 取棱AD的中點M(M∈平面PAD),點M即為所求的一個點,理由如下: 因為AD∥BC,BC=AD, 所以BC∥AM,且BC=AM. 所以四邊形AMCB是平行四邊形,所以CM∥AB. 又AB?平面PAB,CM?平面PAB. 所以CM∥平面PAB. (說明:取棱PD的中點N,則所找的點可以是直線MN上任意一點) (2)證明 由已知,PA⊥AB,PA⊥CD. 因為AD∥BC,BC=AD,所以直線AB與CD相交, 所以PA⊥平面ABCD, 所以PA⊥BD. 因為AD∥BC,BC=AD,M為AD的中點,連接BM, 所以BC∥MD,且BC=MD. 所以四邊形BCDM是平行四邊形, 所以BM=CD=AD,所以BD⊥AB. 又AB∩AP=A,所以BD⊥平面PAB. 又BD?平面PBD, 所以平面PAB⊥平面PBD. 5.(2016課標全國丙)如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點. (1)證明:MN∥平面PAB; (2)求四面體NBCM的體積. (1)證明 由已知得AM=AD=2. 如圖,取BP的中點T,連接AT,TN, 由N為PC中點知TN∥BC,TN=BC=2. 又AD∥BC,故TN綊AM,所以四邊形AMNT為平行四邊形,于是MN∥AT. 因為AT?平面PAB,MN?平面PAB, 所以MN∥平面PAB. (2)解 因為PA⊥平面ABCD,N為PC的中點, 所以N到平面ABCD的距離為PA. 如圖,取BC的中點E,連接AE.由AB=AC=3得AE⊥BC,AE==. 由AM∥BC得M到BC的距離為, 故S△BCM=4=2. 所以四面體NBCM的體積 VNBCM=S△BCM=. 高考必會題型 題型一 空間中的平行問題 例1 如圖,在正方體ABCD-A1B1C1D1中,S是B1D1的中點,E、F、G分別是BC、DC、SC的中點,求證: (1)直線EG∥平面BDD1B1; (2)平面EFG∥平面BDD1B1. 證明 (1)如圖,連接SB, ∵E、G分別是BC、SC的中點, ∴EG∥SB. 又∵SB?平面BDD1B1, EG?平面BDD1B1, ∴直線EG∥平面BDD1B1. (2)連接SD, ∵F、G分別是DC、SC的中點, ∴FG∥SD. 又∵SD?平面BDD1B1,F(xiàn)G?平面BDD1B1, ∴FG∥平面BDD1B1,由(1)知, EG∥平面BDD1B1,且EG?平面EFG, FG?平面EFG,EG∩FG=G, ∴平面EFG∥平面BDD1B1. 點評 證明平行關系的方法 (1)證明線線平行的常用方法: ①利用平行公理,即證明兩直線同時和第三條直線平行; ②利用平行四邊形進行轉換; ③利用三角形中位線定理證明; ④利用線面平行、面面平行的性質定理證明. (2)證明線面平行的常用方法: ①利用線面平行的判定定理,把證明線面平行轉化為證明線線平行; ②利用面面平行的性質定理,把證明線面平行轉化為證明面面平行. (3)證明面面平行的方法: 證明面面平行,依據(jù)判定定理,只要找到一個面內兩條相交直線與另一個平面平行即可,從而將證明面面平行轉化為證明線面平行,再轉化為證明線線平行. 變式訓練1 (2015天津改編)如圖,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2,AA1=,BB1=2,點E和F分別為BC和A1C的中點. 求證:(1)EF∥平面A1B1BA; (2)平面AEA1⊥平面BCB1. 證明 (1)如圖,連接A1B,在△A1BC中,因為E和F分別是BC和A1C的中點, 所以EF∥BA1.又因為EF?平面A1B1BA,BA1?平面A1B1BA,所以EF∥平面A1B1BA. (2)因為AB=AC,E為BC中點,所以AE⊥BC,因為AA1⊥平面ABC,BB1∥AA1,所以BB1⊥平面ABC,從而BB1⊥AE.又因為BC∩BB1=B,所以AE⊥平面BCB1,又因為AE?平面AEA1,所以平面AEA1⊥平面BCB1. 題型二 空間中的垂直問題 例2 如圖所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點. 求證:(1)AF∥平面BCE; (2)平面BCE⊥平面CDE. 證明 (1)如圖,取CE的中點G,連接FG,BG. ∵F為CD的中點, ∴GF∥DE且GF=DE. ∵AB⊥平面ACD, DE⊥平面ACD, ∴AB∥DE,∴GF∥AB. 又AB=DE,∴GF=AB. ∴四邊形GFAB為平行四邊形, ∴AF∥BG. ∵AF?平面BCE,BG?平面BCE, ∴AF∥平面BCE. (2)∵△ACD為等邊三角形,F(xiàn)為CD的中點, ∴AF⊥CD. ∵DE⊥平面ACD,AF?平面ACD, ∴DE⊥AF. 又CD∩DE=D,故AF⊥平面CDE. ∵BG∥AF,∴BG⊥平面CDE. ∵BG?平面BCE,∴平面BCE⊥平面CDE. 點評 (1)證明線面垂直的常用方法: ①利用線面垂直的判定定理,把線面垂直的判定轉化為證明線線垂直; ②利用面面垂直的性質定理,把證明線面垂直轉化為證明面面垂直; ③利用常見結論,如兩條平行線中的一條垂直于一個平面,則另一條也垂直于這個平面. (2)證明面面垂直的方法: 證明面面垂直常用面面垂直的判定定理,即證明一個面過另一個面的一條垂線,將證明面面垂直轉化為證明線面垂直,一般先從現(xiàn)有直線中尋找,若圖中不存在這樣的直線,則借助中點、高線或添加輔助線來解決. 變式訓練2 (2016北京)如圖,在四棱錐PABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC. (1)求證:DC⊥平面PAC; (2)求證:平面PAB⊥平面PAC; (3)設點E為AB的中點,在棱PB上是否存在點F,使得PA∥平面CEF?說明理由. (1)證明 ∵PC⊥平面ABCD,DC?平面ABCD, ∴PC⊥DC.又AC⊥DC,PC∩AC=C,PC?平面PAC,AC?平面PAC,∴DC⊥平面PAC. (2)證明 ∵AB∥CD,CD⊥平面PAC, ∴AB⊥平面PAC,又∵AB?平面PAB, ∴平面PAB⊥平面PAC. (3)解 棱PB上存在點F,使得PA∥平面CEF. 證明如下: 取PB的中點F,連接EF,CE,CF,又∵E為AB的中點, ∴EF為△PAB的中位線, ∴EF∥PA.又PA?平面CEF, EF?平面CEF,∴PA∥平面CEF. 題型三 空間中的平行、垂直綜合問題 例3 (2015山東)如圖,三棱臺DEFABC中,AB=2DE,G,H分別為AC,BC的中點. (1)求證:BD∥平面FGH; (2)若CF⊥BC,AB⊥BC,求證:平面BCD⊥平面EGH. 證明 (1)方法一 如圖,連接DG,設CD∩GF=M,連接MH. 在三棱臺DEF-ABC中, AB=2DE,G為AC的中點, 可得DF∥GC,DF=GC, 所以四邊形DFCG為平行四邊形. 則M為CD的中點, 又H為BC的中點, 所以HM∥BD,又HM?平面FGH,BD?平面FGH, 所以BD∥平面FGH. 方法二 在三棱臺DEF-ABC中,由BC=2EF,H為BC的中點, 可得BH∥EF,BH=EF, 所以四邊形HBEF為平行四邊形, 可得BE∥HF.在△ABC中,G為AC的中點, H為BC的中點,所以GH∥AB. 又GH∩HF=H,AB∩BE=B, 所以平面FGH∥平面ABED. 又因為BD?平面ABED, 所以BD∥平面FGH. (2)連接HE, 因為G,H分別為AC,BC的中點, 所以GH∥AB. 由AB⊥BC,得GH⊥BC. 又H為BC的中點, 所以EF∥HC,EF=HC, 因此四邊形EFCH是平行四邊形, 所以CF∥HE.又CF⊥BC,所以HE⊥BC. 又HE,GH?平面EGH,HE∩GH=H, 所以BC⊥平面EGH. 又BC?平面BCD, 所以平面BCD⊥平面EGH. 點評 (1)立體幾何中,要證線垂直于線,常常先證線垂直于面,再用線垂直于面的性質易得線垂直于線.要證線平行于面,只需先證線平行于線,再用線平行于面的判定定理易得. (2)證明立體幾何問題,要緊密結合圖形,有時要利用平面幾何的相關知識,因此需要多畫出一些圖形輔助使用. (3)平行關系往往用到三角形的中位線,垂直關系往往用到三角形的高線、中線. 變式訓練3 (2015北京)如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=,O,M分別為AB,VA的中點. (1)求證:VB∥平面MOC; (2)求證:平面MOC⊥平面VAB; (3)求三棱錐V-ABC的體積. (1)證明 因為O,M分別為AB,VA的中點, 所以OM∥VB, 又因為VB?平面MOC,所以VB∥平面MOC. (2)證明 因為AC=BC,O為AB的中點, 所以OC⊥AB. 又因為平面VAB⊥平面ABC,且OC?平面ABC, 所以OC⊥平面VAB.又OC?平面MOC, 所以平面MOC⊥平面VAB. (3)解 在等腰直角三角形ACB中,AC=BC=, 所以AB=2,OC=1, 所以等邊三角形VAB的面積S△VAB=. 又因為OC⊥平面VAB. 所以VC-VAB=OCS△VAB=, 又因為三棱錐V-ABC的體積與三棱錐C-VAB的體積相等, 所以三棱錐V-ABC的體積為. 高考題型精練 1.(2016浙江)已知互相垂直的平面α,β交于直線l.若直線m,n滿足m∥α,n⊥β,則( ) A.m∥l B.m∥n C.n⊥l D.m⊥n 答案 C 解析 由已知,α∩β=l,∴l(xiāng)?β, 又∵n⊥β,∴n⊥l,C正確.故選C. 2.(2015安徽)已知m,n是兩條不同直線,α,β是兩個不同平面,則下列命題正確的是( ) A.若α,β垂直于同一平面,則α與β平行 B.若m,n平行于同一平面,則m與n平行 C.若α,β不平行,則在α內不存在與β平行的直線 D.若m,n不平行,則m與n不可能垂直于同一平面 答案 D 解析 對于A,α,β垂直于同一平面,α,β關系不確定,故A錯;對于B,m,n平行于同一平面,m,n關系不確定,可平行、相交、異面,故B錯;對于C,α,β不平行,但α內能找出平行于β的直線,如α中平行于α,β交線的直線平行于β,故C錯;對于D,若假設m,n垂直于同一平面,則m∥n,其逆否命題即為D選項,故D正確. 3.已知α,β是兩個不同的平面,給出下列四個條件: ①存在一條直線a,a⊥α,a⊥β;②存在一個平面γ,γ⊥α,γ⊥β;③存在兩條平行直線a,b,a?α,b?β,a∥β,b∥α;④存在兩條異面直線a,b,a?α,b?β,a∥β,b∥α,可以推出α∥β的是( ) A.①③ B.②④ C.①④ D.②③ 答案 C 解析 對于②,平面α與β還可以相交; 對于③,當a∥b時,不一定能推出α∥β, 所以②③是錯誤的,易知①④正確,故選C. 4.如圖,在正方形ABCD中,E,F(xiàn)分別是BC,CD的中點,AC∩EF=G.現(xiàn)在沿AE,EF,F(xiàn)A把這個正方形折成一個四面體,使B,C,D三點重合,重合后的點記為P,則在四面體P-AEF中必有( ) A.AP⊥△PEF所在平面 B.AG⊥△PEF所在平面 C.EP⊥△AEF所在平面 D.PG⊥△AEF所在平面 答案 A 解析 在折疊過程中,AB⊥BE,AD⊥DF保持不變. ∴?AP⊥平面PEF. 5.如圖所示,在正方體ABCD-A1B1C1D1中,M,N,P,Q分別是AA1,A1D1,CC1,BC的中點,給出以下四個結論: ①A1C⊥MN;②A1C∥平面MNPQ;③A1C與PM相交;④NC與PM異面.其中不正確的結論是( ) A.① B.② C.③ D.④ 答案 B 解析 作出過M,N,P,Q四點的截面交C1D1于點S,交AB于點R,如圖所示中的六邊形MNSPQR,顯然點A1,C分別位于這個平面的兩側,故A1C與平面MNPQ一定相交,不可能平行,故結論②不正確. 6.下列四個正方體圖形中,A,B為正方體的兩個頂點,M,N,P分別為其所在棱的中點,能得出AB∥平面MNP的圖形的序號是( ) A.①③ B.①④ C.②③ D.②④ 答案 B 解析?、僦幸字狽P∥AA′,MN∥A′B, ∴平面MNP∥平面AA′B可得出AB∥平面MNP (如圖). ④中,NP∥AB, 能得出AB∥平面MNP. 7.(教材改編)如圖,正方體ABCD-A1B1C1D1中,E為DD1的中點,則BD1與平面AEC的位置關系為________. 答案 平行 解析 連接BD,設BD∩AC=O, 連接EO,在△BDD1中,O為BD的中點, 所以EO為△BDD1的中位線, 則BD1∥EO,而BD1?平面ACE,EO?平面ACE, 所以BD1∥平面ACE. 8.如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結論中: ①PB⊥AE;②平面ABC⊥平面PBC;③直線BC∥平面PAE;④∠PDA=45. 其中正確的有________(把所有正確的序號都填上). 答案 ①④ 解析 由PA⊥平面ABC,AE?平面ABC,得PA⊥AE, 又由正六邊形的性質得AE⊥AB,PA∩AB=A, 得AE⊥平面PAB,又PB?平面PAB, ∴AE⊥PB,①正確; ∵平面PAD⊥平面ABC, ∴平面ABC⊥平面PBC不成立,②錯; 由正六邊形的性質得BC∥AD, 又AD?平面PAD,BC?平面PAD, ∴BC∥平面PAD, ∴直線BC∥平面PAE也不成立,③錯; 在Rt△PAD中,PA=AD=2AB, ∴∠PDA=45,④正確. 9.如圖,三棱柱ABC—A1B1C1中,側面BB1C1C為菱形,B1C的中點為O,且AO⊥平面BB1C1C,則B1C與AB的位置關系為________. 答案 異面垂直 解析 ∵AO⊥平面BB1C1C,∴AO⊥B1C, 又∵平面BB1C1C為菱形,∴B1C⊥BO, ∴B1C⊥平面ABO,∵AB?平面ABO,∴B1C⊥AB. 10.如圖所示,在四棱錐P—ABCD中,PA⊥底面ABCD,且底面各邊都相等,M是PC上的一動點,當點M滿足________時,平面MBD⊥平面PCD.(只要填寫一個你認為是正確的條件即可) 答案 DM⊥PC(或BM⊥PC,答案不唯一) 解析 ∵四邊形ABCD是菱形, ∴AC⊥BD, 又∵PA⊥平面ABCD, ∴PA⊥BD, 又AC∩PA=A, ∴BD⊥平面PAC,∴BD⊥PC. ∴當DM⊥PC(或BM⊥PC)時, 即有PC⊥平面MBD, 而PC?平面PCD, ∴平面MBD⊥平面PCD. 11.(2015江蘇)如圖,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.設AB1的中點為D,B1C∩BC1=E. 求證:(1)DE∥平面AA1C1C; (2)BC1⊥AB1. 證明 (1)由題意知,E為B1C的中點, 又D為AB1的中點,因此DE∥AC. 又因為DE?平面AA1C1C,AC?平面AA1C1C, 所以DE∥平面AA1C1C. (2)因為棱柱ABC-A1B1C1是直三棱柱, 所以CC1⊥平面ABC. 因為AC?平面ABC, 所以AC⊥CC1. 又因為AC⊥BC,CC1?平面BCC1B1, BC?平面BCC1B1,BC∩CC1=C, 所以AC⊥平面BCC1B1. 又因為BC1?平面BCC1B1, 所以BC1⊥AC. 因為BC=CC1,所以矩形BCC1B1是正方形, 因此BC1⊥B1C. 因為AC,B1C?平面B1AC,AC∩B1C=C, 所以BC1⊥平面B1AC. 又因為AB1?平面B1AC, 所以BC1⊥AB1. 12.(2016山東)在如圖所示的幾何體中,D是AC的中點,EF∥DB. (1)已知AB=BC,AE=EC,求證:AC⊥FB; (2)已知G,H分別是EC和FB的中點,求證:GH∥平面ABC. 證明 (1)因為EF∥DB, 所以EF與DB確定平面BDEF, 如圖①,連接DE.因為AE=EC, D為AC的中點, 所以DE⊥AC.同理可得 BD⊥AC. 又BD∩DE=D, 所以AC⊥平面BDEF. 因為FB?平面BDEF, 所以AC⊥FB. (2)如圖②,設FC的中點為I, 連接GI,HI. 在△CEF中,因為G是CE的中點,所以GI∥EF. 又EF∥DB, 所以GI∥DB. 在△CFB中,因為H是FB的中點,所以HI∥BC. 又HI∩GI=I, 所以平面GHI∥平面ABC, 因為GH?平面GHI, 所以GH∥平面ABC.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 高考數(shù)學 考前3個月知識方法專題訓練 第一部分 知識方法篇 專題6 立體幾何 第26練 完美破解立體幾何的證明問題 高考 數(shù)學 考前 知識 方法 專題 訓練 第一 部分 26 完美 破解 證明 問題
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.kudomayuko.com/p-11854044.html