排列組合基本知識.doc
《排列組合基本知識.doc》由會員分享,可在線閱讀,更多相關(guān)《排列組合基本知識.doc(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。
基本知識 排列與元素的順序有關(guān),組合與順序無關(guān).如231與213是兩個排列,2+3+1的和與2+1+3的和是一個組合. (一)兩個基本原理是排列和組合的基礎 (1)加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法,那么完成這件事共有N=m1+m2+m3+…+mn種不同方法. (2)乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法,那么完成這件事共有N=m1×m2×m3×…×mn種不同的方法. 這里要注意區(qū)分兩個原理,要做一件事,完成它若是有n類辦法,是分類問題,第一類中的方法都是獨立的,因此用加法原理;做一件事,需要分n個步驟,步與步之間是連續(xù)的,只有將分成的若干個互相聯(lián)系的步驟,依次相繼完成,這件事才算完成,因此用乘法原理. 這樣完成一件事的分“類”和“步”是有本質(zhì)區(qū)別的,因此也將兩個原理區(qū)分開來. (二)排列和排列數(shù) (1)排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列. 從排列的意義可知,如果兩個排列相同,不僅這兩個排列的元素必須完全相同,而且排列的順序必須完全相同,這就告訴了我們?nèi)绾闻袛鄡蓚€排列是否相同的方法. (2)排列數(shù)公式:從n個不同元素中取出m(m≤n)個元素的所有排列 ,當m=n時,為全排列Pnn=n(n-1)(n-1)…3·2·1=n! (三)組合和組合數(shù) (1)組合:從n個不同元素中,任取m(m≤n)個元素并成一組,叫做從 n個不同元素中取出m個元素的一個組合. 從組合的定義知,如果兩個組合中的元素完全相同,不管元素的順序如何,都是相同的組合;只有當兩個組合中的元素不完全相同時,才是不同的組合. (2)組合數(shù):從n個不同元素中取出m(m≤n)個元素的所有組合的個 這里要注意排列和組合的區(qū)別和聯(lián)系,從n個不同元素中,任取m(m≤n)個元素,“按照一定的順序排成一列”與“不管怎樣的順序并成一組”這是有本質(zhì)區(qū)別的. 一、排列組合部分是中學數(shù)學中的難點之一,原因在于 (1)從千差萬別的實際問題中抽象出幾種特定的數(shù)學模型,需要較強的抽象思維能力 (2)限制條件有時比較隱晦,需要我們對問題中的關(guān)鍵性詞(特別是邏輯關(guān)聯(lián)詞和量詞)準確理解; (3)計算手段簡單,與舊知識聯(lián)系少,但選擇正確合理的計算方案時需要的思維量較大; (4)計算方案是否正確,往往不可用直觀方法來檢驗,要求我們搞清概念、原理,并具有較強的分析能力。 二、兩個基本計數(shù)原理及應用 (1)加法原理和分類計數(shù)法 1.加法原理 2.加法原理的集合形式 3.分類的要求 每一類中的每一種方法都可以獨立地完成此任務;兩類不同辦法中的具體方法,互不相同(即分類不重);完成此任務的任何一種方法,都屬于某一類(即分類不漏) (2)乘法原理和分步計數(shù)法 1.乘法原理 2.合理分步的要求 任何一步的一種方法都不能完成此任務,必須且只須連續(xù)完成這n步才能完成此任務;各步計數(shù)相互獨立;只要有一步中所采取的方法不同,則對應的完成此事的方法也不同 [例題分析]排列組合思維方法選講 1.首先明確任務的意義 例1. 從1、2、3、……、20這二十個數(shù)中任取三個不同的數(shù)組成等差數(shù)列,這樣的不同等差數(shù)列有________個。 分析:首先要把復雜的生活背景或其它數(shù)學背景轉(zhuǎn)化為一個明確的排列組合問題。 設a,b,c成等差,∴ 2b=a+c, 可知b由a,c決定, 又∵ 2b是偶數(shù),∴ a,c同奇或同偶,即:從1,3,5,……,19或2,4,6,8,……,20這十個數(shù)中選出兩個數(shù)進行排列,由此就可確定等差數(shù)列,因而本題為2=180。 例2. 某城市有4條東西街道和6條南北的街道,街道之間的間距相同,如圖。若規(guī)定只能向東或向北兩個方向沿圖中路線前進,則從M到N有多少種不同的走法? 分析:對實際背景的分析可以逐層深入 (一)從M到N必須向上走三步,向右走五步,共走八步。 (二)每一步是向上還是向右,決定了不同的走法。 (三)事實上,當把向上的步驟決定后,剩下的步驟只能向右。 從而,任務可敘述為:從八個步驟中選出哪三步是向上走,就可以確定走法數(shù), ∴ 本題答案為:=56。 2.注意加法原理與乘法原理的特點,分析是分類還是分步,是排列還是組合 例3.在一塊并排的10壟田地中,選擇二壟分別種植A,B兩種作物,每種種植一壟,為有利于作物生長,要求A,B兩種作物的間隔不少于6壟,不同的選法共有______種。 分析:條件中“要求A、B兩種作物的間隔不少于6壟”這個條件不容易用一個包含排列數(shù),組合數(shù)的式子表示,因而采取分類的方法。 第一類:A在第一壟,B有3種選擇; 第二類:A在第二壟,B有2種選擇; 第三類:A在第三壟,B有一種選擇, 同理A、B位置互換 ,共12種。 例4.從6雙不同顏色的手套中任取4只,其中恰好有一雙同色的取法有________。 (A)240 (B)180 (C)120 (D)60 分析:顯然本題應分步解決。 (一)從6雙中選出一雙同色的手套,有種方法; (二)從剩下的十只手套中任選一只,有種方法。 (三)從除前所涉及的兩雙手套之外的八只手套中任選一只,有種方法; (四)由于選取與順序無關(guān),因而(二)(三)中的選法重復一次,因而共240種。 例5.身高互不相同的6個人排成2橫行3縱列,在第一行的每一個人都比他同列的身后的人個子矮,則所有不同的排法種數(shù)為_______。 分析:每一縱列中的兩人只要選定,則他們只有一種站位方法,因而每一縱列的排隊方法只與人的選法有關(guān)系,共有三縱列,從而有=90種。 例6.在11名工人中,有5人只能當鉗工,4人只能當車工,另外2人能當鉗工也能當車工?,F(xiàn)從11人中選出4人當鉗工,4人當車工,問共有多少種不同的選法? 分析:采用加法原理首先要做到分類不重不漏,如何做到這一點?分類的標準必須前后統(tǒng)一。 以兩個全能的工人為分類的對象,考慮以他們當中有幾個去當鉗工為分類標準。 第一類:這兩個人都去當鉗工,有種; 第二類:這兩人有一個去當鉗工,有種; 第三類:這兩人都不去當鉗工,有種。 因而共有185種。 例7.現(xiàn)有印著0,l,3,5,7,9的六張卡片,如果允許9可以作6用,那么從中任意抽出三張可以組成多少個不同的三位數(shù)? 分析:有同學認為只要把0,l,3,5,7,9的排法數(shù)乘以2即為所求,但實際上抽出的三個數(shù)中有9的話才可能用6替換,因而必須分類。 抽出的三數(shù)含0,含9,有種方法; 抽出的三數(shù)含0不含9,有種方法; 抽出的三數(shù)含9不含0,有種方法; 抽出的三數(shù)不含9也不含0,有種方法。 又因為數(shù)字9可以當6用,因此共有2×(+)++=144種方法。 例8.停車場劃一排12個停車位置,今有8輛車需要停放,要求空車位連在一起,不同的停車方法是________種。 分析:把空車位看成一個元素,和8輛車共九個元素排列,因而共有種停車方法。 3.特殊元素,優(yōu)先處理;特殊位置,優(yōu)先考慮 例9.六人站成一排,求 (1)甲不在排頭,乙不在排尾的排列數(shù) (2)甲不在排頭,乙不在排尾,且甲乙不相鄰的排法數(shù) 分析:(1)先考慮排頭,排尾,但這兩個要求相互有影響,因而考慮分類。 第一類:乙在排頭,有種站法。 第二類:乙不在排頭,當然他也不能在排尾,有種站法, 共+種站法。 (2)第一類:甲在排尾,乙在排頭,有種方法。 第二類:甲在排尾,乙不在排頭,有種方法。 第三類:乙在排頭,甲不在排頭,有種方法。 第四類:甲不在排尾,乙不在排頭,有種方法。 共+2+=312種。 例10.對某件產(chǎn)品的6件不同正品和4件不同次品進行一一測試,至區(qū)分出所有次品為止。若所有次品恰好在第五次測試時被全部發(fā)現(xiàn),則這樣的測試方法有多少種可能? 分析:本題意指第五次測試的產(chǎn)品一定是次品,并且是最后一個次品,因而第五次測試應算是特殊位置了,分步完成。 第一步:第五次測試的有種可能; 第二步:前四次有一件正品有中可能。 第三步:前四次有種可能。 ∴ 共有種可能。 4.捆綁與插空 例11. 8人排成一隊 (1)甲乙必須相鄰 (2)甲乙不相鄰 (3)甲乙必須相鄰且與丙不相鄰 (4)甲乙必須相鄰,丙丁必須相鄰 (5)甲乙不相鄰,丙丁不相鄰 分析:(1)有種方法。 (2)有種方法。 (3)有種方法。 (4)有種方法。 (5)本題不能用插空法,不能連續(xù)進行插空。 用間接解法:全排列-甲乙相鄰-丙丁相鄰+甲乙相鄰且丙丁相鄰,共--+=23040種方法。 例12. 某人射擊8槍,命中4槍,恰好有三槍連續(xù)命中,有多少種不同的情況? 分析:∵ 連續(xù)命中的三槍與單獨命中的一槍不能相鄰,因而這是一個插空問題。另外沒有命中的之間沒有區(qū)別,不必計數(shù)。即在四發(fā)空槍之間形成的5個空中選出2個的排列,即。 例13. 馬路上有編號為l,2,3,……,10 十個路燈,為節(jié)約用電又看清路面,可以把其中的三只燈關(guān)掉,但不能同時關(guān)掉相鄰的兩只或三只,在兩端的燈也不能關(guān)掉的情況下,求滿足條件的關(guān)燈方法共有多少種? 分析:即關(guān)掉的燈不能相鄰,也不能在兩端。又因為燈與燈之間沒有區(qū)別,因而問題為在7盞亮著的燈形成的不包含兩端的6個空中選出3個空放置熄滅的燈。 ∴ 共=20種方法。 5.間接計數(shù)法. (1)排除法 例14. 三行三列共九個點,以這些點為頂點可組成多少個三角形? 分析:有些問題正面求解有一定困難,可以采用間接法。 所求問題的方法數(shù)=任意三個點的組合數(shù)-共線三點的方法數(shù), ∴ 共種。 例15.正方體8個頂點中取出4個,可組成多少個四面體? 分析:所求問題的方法數(shù)=任意選四點的組合數(shù)-共面四點的方法數(shù), ∴ 共-12=70-12=58個。 例16. l,2,3,……,9中取出兩個分別作為對數(shù)的底數(shù)和真數(shù),可組成多少個不同數(shù)值的對數(shù)? 分析:由于底數(shù)不能為1。 (1)當1選上時,1必為真數(shù),∴ 有一種情況。 (2)當不選1時,從2--9中任取兩個分別作為底數(shù),真數(shù),共,其中l(wèi)og24=log39,log42=log93, log23=log49, log32=log94. 因而一共有53個。 (3)補上一個階段,轉(zhuǎn)化為熟悉的問題 例17. 六人排成一排,要求甲在乙的前面,(不一定相鄰),共有多少種不同的方法? 如果要求甲乙丙按從左到右依次排列呢? 分析:(一)實際上,甲在乙的前面和甲在乙的后面兩種情況對稱,具有相同的排法數(shù)。因而有=360種。 (二)先考慮六人全排列;其次甲乙丙三人實際上只能按照一種順序站位,因而前面的排法數(shù)重復了種, ∴ 共=120種。 例18.5男4女排成一排,要求男生必須按從高到矮的順序,共有多少種不同的方法? 分析:首先不考慮男生的站位要求,共種;男生從左至右按從高到矮的順序,只有一種站法,因而上述站法重復了次。因而有=9×8×7×6=3024種。 若男生從右至左按從高到矮的順序,只有一種站法, 同理也有3024種,綜上,有6048種。 例19. 三個相同的紅球和兩個不同的白球排成一行,共有多少種不同的方法? 分析:先認為三個紅球互不相同,共種方法。而由于三個紅球所占位置相同的情況下,共有變化,因而共=20種。 6.擋板的使用 例20.10個名額分配到八個班,每班至少一個名額,問有多少種不同的分配方法? 分析:把10個名額看成十個元素,在這十個元素之間形成的九個空中,選出七個位置放置檔板,則每一種放置方式就相當于一種分配方式。因而共36種。 7.注意排列組合的區(qū)別與聯(lián)系: 所有的排列都可以看作是先取組合,再做全排列;同樣,組合如補充一個階段(排序)可轉(zhuǎn)化為排列問題。 例21. 從0,l,2,……,9中取出2個偶數(shù)數(shù)字,3個奇數(shù)數(shù)字,可組成多少個無重復數(shù)字的五位數(shù)? 分析:先選后排。另外還要考慮特殊元素0的選取。 (一)兩個選出的偶數(shù)含0,則有種。 (二)兩個選出的偶數(shù)字不含0,則有種。 例22. 電梯有7位乘客,在10層樓房的每一層停留,如果三位乘客從同一層出去,另外兩位在同一層出去,最后兩人各從不同的樓層出去,有多少種不同的下樓方法? 分析:(一)先把7位乘客分成3人,2人,一人,一人四組,有種。 (二)選擇10層中的四層下樓有種。 ∴ 共有種。 例23. 用數(shù)字0,1,2,3,4,5組成沒有重復數(shù)字的四位數(shù), (1)可組成多少個不同的四位數(shù)? (2)可組成多少個不同的四位偶數(shù)? (3)可組成多少個能被3整除的四位數(shù)? (4)將(1)中的四位數(shù)按從小到大的順序排成一數(shù)列,問第85項是什么? 分析:(1)有個。 (2)分為兩類:0在末位,則有種:0不在末位,則有種。 ∴ 共+種。 (3)先把四個相加能被3整除的四個數(shù)從小到大列舉出來,即先選 0,1,2,3 0,1,3,5 0,2,3,4 0,3,4,5 1,2,4,5 它們排列出來的數(shù)一定可以被3整除,再排列,有:4×()+=96種。 (4)首位為1的有=60個。 前兩位為20的有=12個。 前兩位為21的有=12個。 因而第85項是前兩位為23的最小數(shù),即為2301。 8.分組問題 例24. 6本不同的書 (1) 分給甲乙丙三人,每人兩本,有多少種不同的分法? (2) 分成三堆,每堆兩本,有多少種不同的分法? (3) 分成三堆,一堆一本,一堆兩本,一堆三本,有多少種不同的分法? (4) 甲一本,乙兩本,丙三本,有多少種不同的分法? (5) 分給甲乙丙三人,其中一人一本,一人兩本,第三人三本,有多少種不同的分法? 分析:(1)有中。 (2)即在(1)的基礎上除去順序,有種。 (3)有種。由于這是不平均分組,因而不包含順序。 (4)有種。同(3),原因是甲,乙,丙持有量確定。 (5)有種。 例25. 6人分乘兩輛不同的車,每車最多乘4人,則不同的乘車方法為_______。 分析:(一)考慮先把6人分成2人和4人,3人和3人各兩組。 第一類:平均分成3人一組,有種方法。 第二類:分成2人,4人各一組,有種方法。 (二)再考慮分別上兩輛不同的車。 綜合(一)(二),有種。 例26. 5名學生分配到4個不同的科技小組參加活動,每個科技小組至少有一名學生參加,則分配方法共有________種. 分析:(一)先把5個學生分成二人,一人,一人,一人各一組。 其中涉及到平均分成四組,有=種分組方法。 (二)再考慮分配到四個不同的科技小組,有種, 由(一)(二)可知,共=240種。- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 排列組合 基本知識
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://m.kudomayuko.com/p-1592071.html