2019-2020年高二數(shù)學(xué)上冊(cè)8.1《向量的坐標(biāo)表示及其運(yùn)算》教案三滬教版.doc
《2019-2020年高二數(shù)學(xué)上冊(cè)8.1《向量的坐標(biāo)表示及其運(yùn)算》教案三滬教版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高二數(shù)學(xué)上冊(cè)8.1《向量的坐標(biāo)表示及其運(yùn)算》教案三滬教版.doc(3頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高二數(shù)學(xué)上冊(cè)8.1《向量的坐標(biāo)表示及其運(yùn)算》教案三滬教版 教學(xué)目的: (1)理解平面向量的坐標(biāo)的概念; (2)掌握平面向量的坐標(biāo)運(yùn)算; (3)會(huì)根據(jù)向量的坐標(biāo),判斷向量是否共線。 教學(xué)重點(diǎn):平面向量的坐標(biāo)運(yùn)算 教學(xué)難點(diǎn):向量的坐標(biāo)表示的理解及運(yùn)算的準(zhǔn)確性 授課類型:新授課 課時(shí)安排:1課時(shí) 教學(xué)過程: 一、復(fù)習(xí)引入: 1.向量的加法:求兩個(gè)向量和的運(yùn)算,叫做向量的加法。 向量加法的三角形法則和平行四邊形法則。 2.向量加法的交換律:+=+ 3.向量加法的結(jié)合律:(+) +=+ (+) 4.向量的減法向量a加上的b相反向量,叫做a與b的差。即:a - b = a + (-b) 5.差向量的意義: = a, = b, 則= a - b 即a - b可以表示為從向量b的終點(diǎn)指向向量a的終點(diǎn)的向量。 6.實(shí)數(shù)與向量的積:實(shí)數(shù)λ與向量的積是一個(gè)向量,記作:λ (1)|λ|=|λ|||;(2)λ>0時(shí)λ與方向相同;λ<0時(shí)λ與方向相反;λ=0時(shí)λ= 7.運(yùn)算定律 λ(μ)=(λμ),(λ+μ)=λ+μ,λ(+)=λ+λ 8. 向量共線定理 向量與非零向量共線的充要條件是:有且只有一個(gè)非零實(shí)數(shù)λ,使=λ。 9.平面向量基本定理:如果,是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量,有且只有一對(duì)實(shí)數(shù)λ1,λ2使=λ1+λ2 (1)我們把不共線向量e1、e2叫做表示這一平面內(nèi)所有向量的一組基底; (2)基底不惟一,關(guān)鍵是不共線; (3)由定理可將任一向量a在給出基底e1、e2的條件下進(jìn)行分解; (4)基底給定時(shí),分解形式惟一. λ1,λ2是被,,唯一確定的數(shù)量 10.平面向量的坐標(biāo)表示 分別取與軸、軸方向相同的兩個(gè)單位向量、作為基底。任作一個(gè)向量,由平面向量基本定理知,有且只有一對(duì)實(shí)數(shù)、,使得 把叫做向量的(直角)坐標(biāo),記作 其中叫做在軸上的坐標(biāo),叫做在軸上的坐標(biāo), 特別地,,,。 11.平面向量的坐標(biāo)運(yùn)算 若,, 則,,。 若,,則 二、講解新課: ∥ ()的充要條件是x1y2-x2y1=0 設(shè)=(x1, y1) ,=(x2, y2) 其中 由=λ得, (x1, y1) =λ(x2, y2) 消去λ,x1y2-x2y1=0 探究:(1)消去λ時(shí)不能兩式相除,∵y1, y2有可能為0, ∵ ∴x2, y2中至少有一個(gè)不為0 (2)充要條件不能寫成 ∵x1, x2有可能為0 (3)從而向量共線的充要條件有兩種形式: ∥ () 三、講解范例: 例1若向量=(-1,x)與=(-x, 2)共線且方向相同,求x 解:∵=(-1,x)與=(-x, 2) 共線 ∴(-1)2- x?(-x)=0 ∴x= ∵與方向相同 ∴x= 例2 已知A(-1, -1), B(1,3), C(1,5) ,D(2,7) ,向量與平行嗎?直線AB與平行于直線CD嗎? 解:∵=(1-(-1), 3-(-1))=(2, 4) , =(2-1,7-5)=(1,2) 又 ∵22-41=0 ∴∥ 又 ∵ =(1-(-1), 5-(-1))=(2,6) =(2, 4) 24-260 ∴與不平行 ∴A,B,C不共線 ∴AB與CD不重合 ∴AB∥CD 四、課堂練習(xí): 1.若a=(2,3),b=(4,-1+y),且a∥b,則y=( ) A.6 B.5 C.7 D.8 2.若A(x,-1),B(1,3),C(2,5)三點(diǎn)共線,則x的值為( ) A.-3 B.-1 C.1 D.3 3.若=i+2j, =(3-x)i+(4-y)j(其中i、j的方向分別與x、y軸正方向相同且為單位向量). 與共線,則x、y的值可能分別為( ) A.1,2 B.2,2 C.3,2 D.2,4 4.已知a=(4,2),b=(6,y),且a∥b,則y= . 5.已知a=(1,2),b=(x,1),若a+2b與2a-b平行,則x的值為 . 6.已知平行四邊形ABCD四個(gè)頂點(diǎn)的坐標(biāo)為A(5,7),B(3,x),C(2,3),D(4,x),則x= . 參考答案:1.C 2.B 3.B 4. 3 5. 6. 5 五、小結(jié) 向量平行的充要條件(坐標(biāo)表示) 六、課后作業(yè): 1.若a=(x1,y1),b=(x2,y2),且a∥b,則坐標(biāo)滿足的條件為( ) A.x1x2-y1y2=0 B.x1y1-x2y2=0 C.x1y2+x2y1=0 D.x1y2-x2y1=0 2.設(shè)a=(,sinα),b=(cosα,),且a∥b,則銳角α為( ) A.30 B.60 C.45 D.75 3.設(shè)k∈R,下列向量中,與向量a=(1,-1)一定不平行的向量是( ) A.(k,k) B.(-k,-k) C.(k2+1,k2+1) D.(k2-1,k2-1) 4.若A(-1,-1),B(1,3),C(x,5)三點(diǎn)共線,則x= . 5.已知a=(3,2),b=(2,-1),若λa+b與a+λb(λ∈R)平行,則λ= . 6.若a=(-1,x)與b=(-x,2)共線且方向相同,則x= . 7.已知a=(1,2),b=(-3,2),當(dāng)k為何值時(shí)ka+b與a-3b平行? 8.已知A、B、C、D四點(diǎn)坐標(biāo)分別為A(1,0),B(4,3),C(2,4),D(0,2),試證明:四邊形ABCD是梯形. 9.已知A、B、C三點(diǎn)坐標(biāo)分別為(-1,0)、(3,-1)、(1,2),=,求證:∥. 參考答案:1.D 2.C 3.C 4. 2 5.1 6. 7.- 8.(略) 9.(略)- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 向量的坐標(biāo)表示及其運(yùn)算 2019 2020 年高 數(shù)學(xué) 上冊(cè) 8.1 向量 坐標(biāo) 表示 及其 運(yùn)算 教案 三滬教版
鏈接地址:http://m.kudomayuko.com/p-2615374.html