2019-2020學年高二數(shù)學下學期第一次月考試題 文(實驗班).doc
《2019-2020學年高二數(shù)學下學期第一次月考試題 文(實驗班).doc》由會員分享,可在線閱讀,更多相關《2019-2020學年高二數(shù)學下學期第一次月考試題 文(實驗班).doc(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020學年高二數(shù)學下學期第一次月考試題 文(實驗班) 注意事項: 1.答卷前,考生先檢查試卷與答題卷是否整潔無缺損,并用黑色字跡的簽字筆在答題卷指定位置填寫自己的班級、姓名、學號和座位號。 2.選擇題每小題選出答案后,請將答案填寫在答題卷上對應的題目序號后,如需改動,用橡皮擦干凈后,再選涂其它答案,答案不能答在試卷上。不按要求填涂的,答案無效。 3.非選擇題必須用黑色字跡的簽字筆作答,答案必須寫在答題卷各題目指定區(qū)域內相應位置上,請注意每題答題空間,預先合理安排;如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用鉛筆和涂改液。不按以上要求作答的答案無效。 4.考生必須保持答題卷的整潔,考試結束后,將答題卷交回。 參考公式:: 1.回歸分析參考公式: 由最小二乘法 所得回歸直線的方程是:, 其中:. 2.獨立性檢驗參考公式和數(shù)據(jù): 合計 合計 則隨機變量,其中為樣本容量; ②獨立檢驗隨機變量的臨界值參考表: 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828 一、選擇題:本大題共12小題,每小題5分,滿分60分. 1.用演繹推理推證“正方形的對角線互相垂直”中,用到下列三個判斷:①正方形是菱形;②菱形的對角線互相垂直;③正方形的對角線互相垂直.則大前提、小前提、結論分別是 (A) ①②③ ( B) ③②① (C) ①③② (D) ②①③ 1 1 1 2 1 1 3 3 1 1 a 6 4 1 1 5 10 10 5 1 2. 右邊所示的三角形數(shù)組是我國古代數(shù)學家楊輝發(fā)現(xiàn)的, 稱為楊輝三角形,根據(jù)圖中的數(shù)構成的規(guī)律,所表示 的數(shù)是 (A) 2 ( B) 4 (C) 6 (D)8 3.命題“三角形中最多只有一個內角是直角”的結論的否定是 (A) 三角形中有兩個內角是直角 ( B) 三角形的內角都是直角 (C)三角形中至少有兩個內角是直角 (D)三角形中沒有一個內角是直角 4.用火柴棒按下圖的方法搭三角形: 按圖示的規(guī)律搭下去,則所用火柴棒數(shù) 與所搭三角形的個數(shù)之間的關系式可以是 A. ( B) (C) (D) 5.已知整數(shù)對按如下規(guī)律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1), (1,4),(2,3),(3,2),(4,1),……,則第70個數(shù)對是 ……………………………………… 圖2 (A)(10,1) ( B)(5,10) (C)(4,10) (D) (10,4) 6.如圖2所示的三角形數(shù)陣叫“萊布尼茲調和三角形”, 它們是由整數(shù)的倒數(shù)組成的,第行有個數(shù)且兩端 的數(shù)均為,每個數(shù)是它下一行左右相鄰兩數(shù) 的和,如,,,…, 則第10行第4個數(shù)(從左往右數(shù))為 (A) ( B) (C) (D) 7.已知與之間的一組數(shù)據(jù): x 1 2 3 4 y m 3.2 4.8 7.5 若關于的線性回歸方程為,則的值為 (A) l ( B) 0.85 ( C) 0.7 (D) 0.5 8.為了調查中學生課外閱讀古典文學名著的情況,某校學生會從男生中隨機抽取了50人,從女生中隨機抽取了60人參加古典文學名著知識競賽,統(tǒng)計數(shù)據(jù)如下表所示,經(jīng)計算,則測試成績是否優(yōu)秀與性別有關的把握為 優(yōu)秀 非優(yōu)秀 總計 男生 35 15 50 女生 25 35 60 總計 60 50 110 (A) 90% ( B) 95% (C) 99.5% (D) 99.9% 9.一名法官在審理一起珍寶盜竊案時,四名嫌疑人甲、乙、丙、丁的供詞如下,甲說:“罪犯在乙、丙、丁三人之中”;乙說:“我沒有作案,是丙偷的”;丙說:“甲、乙兩人中有一人是小偷”;丁說:“乙說的是事實”.經(jīng)過調查核實,四人中有兩人說的是真話,另外兩人說的是假話,且這四人中只有一人是罪犯,由此可判斷罪犯是( ) (A) 甲 ( B) 乙 (C) 丙 (D) 丁 10.已知數(shù)列滿足,則= (A) 0 ( B) (C) (D) 11.如圖,圓周上按順時針方向標有1,2,3,4,5五個點.一只 青蛙按順時針方向繞圓從一點跳到另一點.若它停在奇數(shù)點上, 則下一次只能跳一個點;停在偶數(shù)點上,則跳兩個點.該青蛙 從5這點跳起,經(jīng)xx次跳后它將停在的點是 (A) ( B) (C) (D) 12.把正奇數(shù)數(shù)列的各項從小到大依次排成如下三角形狀數(shù)表: 1 3 5 7 9 11 13 15 17 19 … … … … … 記表示該表中第s行的第t個數(shù),則表中的奇數(shù)xx對應于 (A) ( B) (C) (D) 二、填空題:本大題共4小題,每小題5分,滿分20分. 13.在數(shù)列中,,通過計算,由此猜想這個數(shù)列的通項公式為_______________. 14.如圖是一個有層的六邊形點陣.它的中心是一個點, 算作第一層, 第2層每邊有2個點,第3層每邊有3個點 ,…, 第層每邊有個點, 則這個點陣的點數(shù)共有 個. 15.在平面內有≥條直線,其中任何兩條不平行,任何三條不過同一點,若這條直線把平面分成個平面區(qū)域,則的表達式是 . 16.給出下列不等式: , , , ………… 則按此規(guī)律可猜想第個不等式為 . 三、解答題:本大題共6小題,滿分70分. 17.(本小題滿分10分) 用分析法證明:. 18.(本小題滿分12分) 用反證法證明:已知,且,求證:與中至少有一個小于. 19.(本小題滿分12分) 網(wǎng)絡購物已經(jīng)被大多數(shù)人接受,隨著時間的推移,網(wǎng)絡購物的人越來越多,然而也有部分人對網(wǎng)絡購物的質量和信譽產(chǎn)生懷疑.對此,某新聞媒體進行了調查,在所有參與 調查的人中,持“支持”和“不支持”態(tài)度的人數(shù)如下表所示: 年齡 態(tài)度 支持 不支持 20歲以上50歲以下 800 200 50歲以上(含50歲) 100 300 (1)在所有參與調查的人中,用分層抽樣的方法抽取個人,已知從持“支持”態(tài)度的人中抽取了9人,求的值; (2)是否有99.9%的的把握認為支持網(wǎng)絡購物與年齡有關? 20.(本小題滿分12分) 某企業(yè)為了對生產(chǎn)的一種新產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到以下數(shù)據(jù): 單價x(元/件) 60 62 64 66 68 70 銷量y(件) 91 84 81 75 70 67 (Ⅰ)畫出散點圖,并求關于的回歸方程; (Ⅱ)已知該產(chǎn)品的成本是36元/件,預計在今后的銷售中,銷量與單價仍然服從(Ⅰ)中的關系,為使企業(yè)獲得最大利潤,該產(chǎn)品的單價應定為多少元(精確到元)? 21.(本小題滿分12分) 已知橢圓具有性質:若是橢圓上關于原點對稱的兩個點,點是橢圓上任意一點,且直線的斜率都存在(記為),則是與點位置無關的定值.試寫出雙曲線的類似性質,并加以證明. F1 A x y O F2 22.(本小題滿分12分) 已知:; .通過觀察上述兩等式的規(guī)律,請你寫出對任意角度都成立的一般性的命題,并給予證明. xx第二學期第一次月考 高二年級實驗班(文科數(shù)學)試題 參考答案 一、選擇題:本大題每小題5分,滿分60分. 1 2 3 4 5 6 7 8 9 10 11 12 D B C D C B D C B B A A 二、填空題:本大題每小題5分;滿分20分. 13.. 14.. 15..16.. 三、解答題: 17.(本小題滿分10分) 用分析法證明:. 證明:要證, 只需證 只需證 只需證 只需證 只需證,此式顯然成立. 由于以上過程步步可逆,故原不等式成立. 18.(本小題滿分12分) 用反證法證明:已知,且,求證:與中至少有一個小于. 證明:假設和都不小于,即,. ∵,∴, 以上兩式相加并整理,得.這與已知條件矛盾,這說明假設不正確, 故原結論成立. 19.(本小題滿分10分) 網(wǎng)絡購物已經(jīng)被大多數(shù)人接受,隨著時間的推移,網(wǎng)絡購物的人越來越多,然而也有部分人對網(wǎng)絡購物的質量和信譽產(chǎn)生懷疑.對此,某新聞媒體進行了調查,在所有參與 調查的人中,持“支持”和“不支持”態(tài)度的人數(shù)如下表所示: 年齡 態(tài)度 支持 不支持 20歲以上50歲以下 800 200 50歲以上(含50歲) 100 300 (1)在所有參與調查的人中,用分層抽樣的方法抽取個人,已知從持“支持”態(tài)度的人中抽取了9人,求的值; (2)是否有99.9%的的把握認為支持網(wǎng)絡購物與年齡有關? 解:(1)由題意,得, 所以.............................5分 (2)根據(jù)題意得列聯(lián)表如下, 年齡 態(tài)度 支持 不支持 合計 20歲以上50歲以下 800 200 1000 50歲以上(含50歲) 100 300 400 合計 900 500 1400 .......................................................8分 所以..................10分 所以有99.9%的把握認為是否支持網(wǎng)絡購物與年齡有關.....................12分 20.(本小題滿分12分) 某企業(yè)為了對生產(chǎn)的一種新產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到以下數(shù)據(jù): 單價x(元/件) 60 62 64 66 68 70 銷量y(件) 91 84 81 75 70 67 (I)畫出散點圖,并求關于的回歸方程; (II)已知該產(chǎn)品的成本是36元/件,預計在今后的銷售中,銷量與單價仍然服從(I)中的關系,為使企業(yè)獲得最大利潤,該產(chǎn)品的單價應定為多少元(精確到元)? 【解析】(I)散點圖如圖 ……………2分 由圖得銷量與單價線性相關 …………3分 …………4分 ……6分 回歸直線方程為 ……………8分 (II)利潤 ……………10分 當時,利潤最大,這時 故定價約為元時,企業(yè)獲得最大利潤. ……………12分 21.(本小題滿分12分) 已知橢圓具有性質:若是橢圓上關于原點對稱的兩個點,點是橢圓上任意一點,且直線的斜率都存在(記為),則是與點位置無關的定值.試寫出雙曲線的類似性質,并加以證明. 解: 雙曲線的類似性質為: 若是雙曲線上關于原點對稱的兩個點,點是雙曲線上任意一點,且直線的斜率都存在(記為),則是與點位置無關的定值. 證明如下: 設點的坐標為,則點的坐標為,且, 又設點的坐標為,則. 將和 代入上式,得(定值). 22.(本小題滿分12分) 已知:; .通過觀察上述兩等式的規(guī)律,請你寫出對任意角度都成立的一般性的命題,并給予證明. 解:一般形式: 證明如下: 左邊 = = = = = (將一般形式寫成 等均正確.)- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020學年高二數(shù)學下學期第一次月考試題 文實驗班 2019 2020 年高 數(shù)學 學期 第一次 月考 試題 實驗
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.kudomayuko.com/p-4312573.html